
USN

< , '-
iJ';:)

I"-

tr-fsEC53
<:;

) ~O
~~emester B.E. Degree Examination, DeC.2017/Ja~~8
<S-~f> Verilog HDL ~;.\OAO
~ ,S ~ ~

Time: 3 hrs. <1--::;;;) tJ''-.:Max. Marks: 80

' ~& - - ~~
Note: Answer ~ full questions, choosing one full questilf1l.f~n each module.

~ ~
Ql)~,; Module-l I"_~

1 a. Explain a typical des~~w for designing VLSI Ie cir~c' I ~ the block diagram.
~\ ~lli~

b. Explain top down desIg~t9odology and bottom up d 1 ethodology. (10 Marks)

~0 ~~ \~ 0 OR {(.0.
2 a. With a block diagram of 4-hifltjpple carry coun~~~ in the design hierarchy. (10 Marks)

b. Explain the trends in Hardwar~~s2ri tion Lan Cs (HDLs). (06 Marks) --~q fr·':.\..,
u~ 0 1

3 a. With a neat block diagram, explain tll:G ~s of veri log module. (06 Marks)
b. Explain the following data types with an e~ple in verilog:

(i) Nets (ii) Register (iii) Inte~rs \)~Lv) Real (v) Time Register. (10 Marks)
':.::-'- /'

G~RVcfp
4 a. Expla~ the port connection rule~)?;-7 --5~· . . . (06 Marks)

b. Explam the two methods of conn~~i'-rig ports to ~ ,~slgnals wIth an example. (10 Marks) .) ~r./
""J' ~:::;-~>

~
()) Module-3 c/;;-?

5 a. What are Rise, Fall and .:eft delays? How they are~~ed in verilog? (06 Marks)

b. Design a 2-to-l multip' €j{sing bufifo and bufifl gat~~~delay specification for these
gates are as follows: (-:) 'C'"'::.-_

',,- Dela Min T - :;::\
_ (~';')) Rise 1 2

c.:>. C/ Fall 3 4
r~
',.~~.) Turn-off 5 6

Write gate I(v.e;l;discription and stimulus in verilog. .~':")
~~ C/ ~~. . . ::-.5\

c.~ \- OR \. :;=.,!
6 a. Write ~flog dataflow level of abstraction for 4-to-l multiplexer \;illlj~~sonditional

opeR!~'/ \~~~6 Marks)
h. W~-ife-~)verilog dataflow description for 4-bit Full adder with carry lookahead. (Q,){Y Marks)

/1{ ",::!/ 0 <;";>

~
I'-....~ Module-4 (/ <;-:)

7 <t:..::: __ plain the blocking assignment statements and non-blocking assignment statement<-With
re evant examples. (08 Marks)

(10 Marks)

h. Write a note on the following loop statements:
(i) While loop (ii) forever loop. (08 Marks)

lof2

-

•

~ ~~C53
~ OR ~O

8 a. Expl~""~quential and parallel blocks with examples. f}ijj (08 Marks)

b. Writ~~Og program for 8-to-1 multiplexer using case statement. ~ <'1 (08 Marks)

"7&) ~~)

9 a. Explain the s . process with a block diagram. ~~ (08 Marks)

(08 Marks)

12~ Module-5 A
b. Write a VHD"L / \ for two 4-bit comparator using data ~j)_~CriPtion.

10 a. Explain the declarati~.tant, var~~ and SignA with example. (OS Mad",)

b. Write a VHDL program ~~~dder in behavioral~s~tion. (08 Marks)

\~ V ~

~~-***** ~'
"ff40-~

(/ U"0
/)

(.~~
" (c~9 \~-;7J ~ C ')

~~ ~~S)
. ~;f- ~>

--)) <~ /~>

ij}/ (/ (;.,';\
~ ~~S

~(~' ~~
'..J ~--))

'\,::>-r-~

@;j"l (0<.,/
~c'/ .c/ '
-~ ~>
~

'V'"";:::; s'-)
(' I ~~/\::':'\
2~ .\S-:~;

i??;; 0 (c5~-"\
~~ ~~> # ~o~

.~ " d?/

20f2

1 a) Explain a typical design flow for designing VLSI IC circuits using the block

diagram.

6 Marks

 A typical design flow for designing VLSI IC circuits is shown in Figure below

03 marks

In any design, specifications are written first. Specifications describe abstractly the

functionality, interface, and overall architecture of the digital circuit to be designed. A

behavioral description is then created to nalyse the design in terms of functionality,

performance, compliance to standards, and other high-level issues. They are written using

HDLs. The behavioral description is manually converted to an RTL description in an HDL.

The designer has to describe the data flow that will implement the desired digital circuit. Logic

synthesis tools convert the RTL description to a gate-level netlist. A gate-level netlist is a

description of the circuit in terms of gates and connections between them. The gate-level netlist

is input to an Automatic Place and Route tool, which creates a layout. The layout is verified

and then fabricated on chip. Thus, most digital design activity is concentrated on manually

optimizing the RTL description of the circuit. Behavioral synthesis tools have begun to emerge

recently. These tools can create RTL descriptions from a behavioral or algorithmic description

of the circuit.

03 marks

2. b) Explain top down design methodology and bottom up Design methodology. 10 Marks

 There are two basic types of digital design methodologies: a top-down design methodology and a bottom-

up design methodology.

Top-Down design methodology:

In a top-down design methodology, define the top-level block and identify the sub-blocks necessary to

build the top-level block. Further subdivide the sub-blocks until leaf cells are available, which are the cells

that cannot further be divided. Following figure shows the top-down design process:

04 marks

Bottom-up design methodology:

First identify the building blocks that are available. Then build bigger cells, using these building blocks.

These cells are then used for higher-level blocks until the top-level block in the design is built. Following

figure shows the bottom-up design process. Following figure shows the bottom-up design process:

04 marks

The ripple carry counter shown in following figure:

It is made up of negative edge triggered toggle flip-flops (T_FF). Each of the T-FFs can be made up from

negative edge-triggered D-flipflops (D_FF) and inverters as shown in the following figure:

Thus, the ripple carry counter is built in a hierarchical fashion by using building blocks. The diagram for

the design hierarchy is:

02 marks

2 a) With a block diagram of 4-bit ripple carry counter explain the design

hierarchy.

10 Marks

02 marks

The ripple carry counter shown in following figure:

02 marks

It is made up of negative edge triggered toggle flip-flops (T_FF). Each of the T-FFs can be

made up from

negative edge-triggered D-flipflops (D_FF) and inverters as shown in the following figure:

02 marks

Thus, the ripple carry counter is built in a hierarchical fashion by using building blocks. The

diagram for the design hierarchy in top-down design methodology is:

04 marks

// Ripple Carry Counter Top Block

module ripple-carry-counter(q, clk, reset) ;

output [3:01 q;

input clk, reset;

T-FF tffO(q[O] ,clk, reset)

T-FF tffl(q[l] ,q[O], reset

T-FF tff2 (q[2] ,q[l], reset

T-FF tff3 (q[3l ,q[2], reset

Endmodule

//Flip-flop T-FF

module T-FF (q, clk, reset) ;

output q;

input clk, reset;

wire d;

D-FF dff0 (q, d, clk, reset) ;

not nl(d, q) ; / / not is a Verilog-provided primitive. case

sensitive

endmodule

//module D-FF with synchronous reset

module D-FF(q, d, clk, reset) ;

output q;

input d, clk, reset;

reg q;

always @(posedge reset or negedge clk)

if (reset)

q = l'bO;

else

q = d;

endmodule

 b) Explain the trends in Hardware Description Languages (HDLs) 06 Marks

 1. Start design of digital circuits using HDL at an RTL level, because logic synthesis tools

can create gate-level netlists from RTL level des

2. Behavioral synthesis helps designers to design directly in terms of algorithms and the

behavior of the circuit, and then use CAD tools to do the translation and optimization in each

phase of the design.

3. Formal verification techniques are also appearing on the horizon. Formal verification

applies formal mathematical techniques to verify the correctness of Verilog HDL descriptions

and to establish equivalency between RTL and gate-level netlists.

4. Designers can mix gate-level description directly into the RTL description to achieve

optimum results.

5. System-level design can be a mixed bottom-up methodology where the designers use either

existing Verilog HDL modules, basic building blocks, or vendor-supplied core blocks to

quickly bring up their system simulation. This is done to reduce development costs and

compress design schedules.

06 marks

3 a) With a neat block diagram, explain the components of Verilog module. 06 Marks

The components of Verilog HDL program is as shown below:

03 marks

A module definition always begins with the keyword module. The module name, port list, port

declarations, and optional parameters must come first in a module definition. Port list and port

declarations are present only if the module has any ports to interact with the external

environment. The five components within a module are - variable declarations, dataflow

statements, instantiation of lower modules, behavioral blocks, and tasks or functions. These

components can be in any order and at any place in the module definition. The endmodule

statement must always come last in a module definition. All components except module,

module name, and endmodule are optional and can be mixed and matched as per design needs.

Verilog allows multiple modules to be defined in a single file. The modules can be defined in

any order in the file.

03 marks

 b) Explain the following data types with an example in erilog:

(i) Nets (ii) Register (iii) Integers (iv) Real (v) Time Register.

10 Marks

(i) Nets: Nets represent connections between hardware elements. Just as in real circuits, nets

have values continuously driven on them by the outputs of devices that they are connected to.

Nets are declared primarily with the keyword wire.

Example:

wire a; //Declare net a for the above circuit

wire b,c; //Declare two wires b,c for the above circuit

wire d = l’b0; //Net d is fixed to logic value 0 at declaration.

02 marks

(ii) Register: Registers represent data storage elements. Registers retain value until another

value is placed onto them. Unlike a net, a register does not need a driver. Verilog registers do

not need a clock as hardware

registers do. Values of registers can be changed anytime in a simulation by assigning a new

value to the register. Register data types are commonly declared by the keyword reg. The

default value for a reg data type is ‘x’.

Example:

reg reset; //declare a variable reset that can hold its value

initial //this construct will be discussed later

begin

reset = l’b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = l’b0; //after 100 time units reset is deasserted.

End

02 marks

(iii) Integers:

An integer is a general purpose register data type used for manipulating quantities. Integers

are declared by the keyword integer. The default width for an integer is the host-machine

word size, which is implementation specific but is at least 32-bits. Registers declared as data

type ‘reg’ store values as unsigned quantities, whereas integers store values as signed

quantities.

Example:

integer counter; //general purpose variable used as a counter.

Initial

counter = -1;

02 marks

(iv) Real:

Real number constants and real register data types are declared with the keyword real. They

can be specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6)

Example:

real delta; // Define a real variable called delta

initial

begin

delta=4e10; // delta is assigned in scientific notation

delta= 2.13; //delta is assigned a value 2.13

end

integer i; //Define an integer i

initial

i = delta; //i gets the value 2 (rounded value of 2.13)

02 marks

(v) Time Register:

Verilog simulation is done with respect to simulation time. A special time register data type is

used in Verilog to store simulation time. A time variable is declared with the keyword time.

The width for time register data types is implementation specific but is at least 64 bits.

time save_sim_time; //Define a time variable save_sim_time

initial

save_sim_time = $time; // Save the current simulation time

02 marks

4 a) Explain the port connection rules. 06 Marks

 A port consisting of two units, one unit that is internal to the module another that is

external to the module. The internal and external units are connected.

Internally, input ports must always be of the type net. Externally, the inputs can be

connected to a variable which is a reg or a net.

02 marks

Internally, outputs ports can be of the type reg or net. Externally, outputs must always

be connected to a net. They cannot be connected to a reg.

02 marks

Internally, inout ports must always be of the type net. Externally, inout ports must

always be connected to a net.

02 marks

It is legal to connect internal and external items of different sizes when making inter-

module port connections. However, a warning is typically issued that the widths do not

match.

Verilog allows ports to remain unconnected.

 b) Explain the two methods of connecting ports to external signals with an

example.

10 Marks

There are two methods of making connections between signals specified in the module

instantiation and the ports in a module definition.

Connecting by ordered list:

The signals to be connected must appear in the module instantiation in the same order

as the ports in the port list in the module definition.

Example:

module Top;

//Declare connection variables

reg [3:0]A,B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

fulladd4 fa_ordered (SUM, C_OUT, A, B, C_IN);

….

<stimulus>

…

endmodule

module fulladd4(sum, c_out, a, b, c_in);

output [3: 0] sum;

output c_cout;

input [3:0] a, b;

input c_in;

<module internals>

endmodule

The external signals SUM, C_OUT, A, B, and C_IN appear in exactly the same order as

the ports sum, c_out, a, b, and cin in module definition of fulladd4.

05 marks

Connecting ports by name:

Verilog provides the capability to connect external signals to ports by the port names,

rather than by position. The port connections can be specified in any order as long as

the port name in the module definition correctly matches the external signal.

Example:

module Top;

//Declare connection variables

reg [3:0]A,B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

fulladd4 fa_byname(.c_out(C_OUT), . sum (SUM) , .b(B), .c_in(C_IN), .a(A),) ;

// Ports are connected by name.

<stimulus>

…

endmodule

module fulladd4(sum, c_out, a, b, c_in);

output [3: 0] sum;

output c_cout;

input [3:0] a, b;

input c_in;

<module internals>

endmodule

The external signals SUM, C_OUT, A, B, and C_IN appear the different order and both

internal and external signals are present in the connection list.

05 marks

5 a) What are Rise, Fall and turn-off delays? How they are specified in Verilog? 06 Marks

Rise delay:

The rise delay is associated with a gate output transition to a 1 from another value.

01 marks

Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

01 marks

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value (z)

from another value. If the value changes to x, the minimum of the three delays is considered.

01 marks

Three types of delay specifications are allowed.

If only one delay is specified, this value is used for all transitions.

and #(5) al(out, il, i2);

If two delays are specified, they refer to the rise and fall delay values. The turn-off delay is

the minimum of the two delays.

and #(4,6) a2(out, il, i2);

If all three delays are specified, they refer to rise, fall, and turn-off delay values. If no delays

are specified, the default value is zero.

Bufif0 # (3,4,5) bl (out, in, control) ;

03 marks

 b) Design a 2-to-l multiplexer using bufif0 and bufif1 gates. The delay

specification for these gates are as follows:

Write gate-level description and stimulus in verilog.

10 Marks

Truth table:
S Out

0 in0

1 in1

02 marks

Logic diagram:

02 marks

Design:

module bufnot(

input in1, in0, s,

output out

);

bufif1 #(1:2:3,3:4:5,5:6:7) b2(out,in1,s);

bufif0 #(1:2:3,3:4:5,5:6:7) b1(out,in0,s);

endmodule

03 marks

Stimulus:

module bufnot_tb;

reg in1, in0, s;

wire out;

bufnot uut (.in1(in1), .in0(in0), .s(s), .out(out));

initial begin

in1 = 0; in0 = 0; s = 0;#100;

in1 = 1; in0 = 0; s = 0;#100;

in1 = 0; in0 = 1; s = 0;#100;

in1 = 1; in0 = 1; s = 0;#100;

in1 = 0; in0 = 0; s = 1;#100;

in1 = 1; in0 = 0; s = 1;#100;

in1 = 0; in0 = 1; s = 1;#100;

in1 = 1; in0 = 1; s = 1;#100;

end

endmodule

03 marks

6 a) Write a Verilog dataflow level of abstraction for 4-to-l multiplexer using

conditional operator.

06 Marks

 Design:

module mux_41(s1, s0, i0, i1, i2, i3, y);

input s1, s0, i0, i1, i2, i3;

output y;

assign y = s1 ? (s0 ? i3: i2) : (s0 ? i1: i0);

endmodule

06 marks

 b) Write a Verilog dataflow description for 4-bit Full adder with carry

lookahead.

10 Marks

 module fulladd4(sum, c_out, a, b, c_in);

output [3:0] sum;

output c_out;

input [3:0] a,b;

input c_in;

wire p0,p1, p2,p3,g0,g1, g2,g3;

wire c4, c3, c2, c1;

02 marks

assign p0 = a[0] ^ b[0],

p1 = a[l] ^ b[1],

p2 = a[2] ^ b[2],

p3 = a[3] ^ b[3];

02 marks

assign g0 = a[0] & b[0],

g1 = a[l] & b[1],

g2 = a[2] & b[2],

g3 = a[3] & b[3];

02 marks

assign c1= g0 | (p0 & c_in),

c2= g1 | (p1 & g0) | (p1 & p0 & c_in)),

c3= g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in)),

c4= g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | (p2 & p1 & p0 & c_in));

02 marks

assign s[0]=a[0] ^ b[0] ^ c_in;

assign s[1]=a[1] ^ b[1] ^ c1;

assign s[2]=a[2] ^ b[2] ^ c2;

assign s[3]=a[3] ^ b[3] ^ c3;

endmodule

02 marks

7 a) Explain the blocking assignment statements and non-blocking assignment

statement with relevant examples.

08 Marks

Blocking assignment statements:

Blocking assignment statements are executed in the order they are specified in a

sequential block. A blocking assignment will not block execution of statements that

follow in a parallel block.

Example:

reg x, y, z ;

reg r[15:0] reg_a, reg_b;

integer count;

initial

begin

x = 0 ; y = l ; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg_a = 16’b0; reg_b = reg_a; //initialize vectors

#l5 reg_a[2] = l’bl; //Bit select assignment with delay

#l0 reg_b[15:13] = {x, y, z}; //Assign result of concatenation to part select of a vector

count = count + 1; //Assignment to an integer (increment)

end

The statement y = 1 is executed only after X = 0 is executed. The behavior in a

particular block is sequential in a begin-end block if blocking statements are used,

because the statements can execute only in sequence. The statement count = count + 1

is executed last.

The simulation times at which the statements are executed are as follows:

1. All statements X = 0 through reg_b = reg_a are executed at time 0

2. Statement reg_a[2] = 0 at time = 15

3. Statement reg_b[15:13] = {X, y, z} at time = 25

4. Statement count = count + 1 at time = 25

5. Since there is a delay of 15 and 10 in the preceding statements, count = count+ 1 will

be executed at time = 25 units

04 marks

Nonblocking Assignments:

Nonblocking assignments allow scheduling of assignments without blocking execution

of the statements that follow in a sequential block. A <= operator is used to specify

nonblocking assignments.

Example:

reg x, y, z ;

reg r[15:0] reg_a, reg_b;

integer count;

initial

begin

x = 0 ; y = l ; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg_a = 16’b0; reg_b = reg_a; //initialize vectors

#l5 reg_a[2] <= l’bl; //Bit select assignment with delay

#l0 reg_b[15:13] <= {x, y, z}; //Assign result of concatenation to part select of a vector

count <= count + 1; //Assignment to an integer (increment)

end

In this example the statements x = 0 through reg_b = reg_a are executed sequentially at

time O. Then, the three nonblocking assignments are processed at the same simulation

time.

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15)

2. reg_b[15:13] = {x, y, z} is scheduled to execute after 10 time units (i.e., time = 10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0)

04 marks

 b) Write a note on the following loop statements:

(i) While loop (ii) forever loop.

08 Marks

(i) While loop:

The while loop executes until the while-expression becomes false. If the loop is entered

when the while-expression is false, the loop is not executed at all. Any logical expression

can be specified with these operators. If multiple statements are to be executed in the

loop, they must be grouped typically using keywords begin and end.

Example:

integer count;

initial

begin

count = 0;

while (count < 128) //Execute loop till count is 127.

//exit at count 128

begin

end

$display("Count = %d", count);

count = count + 1;

end

04 marks

(ii) forever loop:

The keyword forever is used to express this loop. The loop does not contain any

expression and executes forever until the $finish task is encountered. The loop is

equivalent to a while loop with an expression that always evaluates to true,

e.g., while (1).

A forever loop is typically used in conjunction with timing control constructs.

Example:

reg clock;

initial

begin

clock = l'b0;

forever #10 clock =¬clock; //Clock with period of 20 units

end

04 marks

8 a) Explain the sequential and parallel blocks with examples. 08 Marks

Sequential blocks

The keywords begin and end are used to group statements into sequential blocks.

Sequential blocks have the following characteristics:

1. The statements in a sequential block are processed in the order they are specified. A

statement is executed only after its preceding statement completes execution (except for

nonblocking assignments with intra-assignment timing control).

2. If delay or event control is specified, it is relative to the simulation time when the

previous statement in the block completed execution.

Example1:

reg X, Y;

reg [1:0] z, w;

initial

begin

X = l'bO;

y = l'bl;

z = {x, y};

w = {y , x};

end

The final values are X = 0, y= 1, z = 1, W = 2 at simulation time 0.

Example2:

reg X, y;

reg [1:0] z, w;

initial

begin

X = l'bO;

#5 y = l'bl;

#10 z = {x, y};

#20 w = {y , x};

end

The final values are the same except that the simulation time is 35 at the end of the

block.

04 marks

Parallel blocks

Parallel blocks, specified by keywords fork and join, provide interesting simulation

features. Parallel blocks have the following characteristics.

1. Statements in a parallel block are executed concurrently.

2. Ordering of statements is controlled by the delay or event control assigned to each

statement.

3. If delay or event control is specified, it is relative to the time the block was entered.

Example

reg x, y;

reg [1 : 0] z, w;

initial

fork

x = l'b0; //completes at simulation time 0

#5 y = l'b1; //completes at simulation time 5

#10 z {x, y}; //completes at simulation time 10

#20 w = {y, x};

join 04 marks

 b) Write a Verilog program for 8-to-1 multiplexer using case statement. 08 marks

 module mux8_1 (sel, I, out);

input [2:0] sel;

input [7:0] I;

output out;

reg out;

03 marks

always @(sel, I)

case (sel)

3’b000: out = I[0];

3’b001: out = I[1];

3’b010: out = I[2];

3’b011: out = I[3];

3’b100: out = I[4];

3’b101: out = I[5];

3’b110: out = I[6];

3’b111: out = I[7];

default: out = 1’bx;

endcase

endmodule

05 marks

9 a) Explain the synthesis process with a block diagram. 08 Marks

Synthesis is the realization of design descriptions into circuits. In other words, synthesis

is the process by which logic circuits are created from design descriptions. VHDL

synthesis software tools convert VHDL descriptions to technology-specific netlists or

sets of equations. Synthesis tools allow designers to design logic circuits by creating

design descriptions without having to perform all of the Boolean algebra or create

technology-specific, optimized netlists. Synthesis should be technology specific. Figure

shown below illustrates the synthesis and optimization processes. The synthesis process

then converts the design to internal data structures, allowing the "behavior" of a design

to be translated to a register transfer level (RTL) description. RTL descriptions specify

registers, signal inputs, signal outputs, and the combinational logic between them. At this

point, the combinational logic is still represented by internal data structures. The

synthesis process converts the design to internal data structures, allowing the "behavior"

of a design to be translated to a register transfer level (RTL) description. RTL

descriptions specify registers, signal inputs, signal outputs, and the combinational logic

between them. Other RTL elements depend on the device-specific library. Some

synthesis tools will search the data structures for identifiable operators and their

operands, replacing these portions of logic with technology-specific, optimized

components. Other portions of logic that are not identified are then converted to Boolean

expressions that are not yet optimized.

05 marks

03 marks

 b) Write a VHDL program for two 4-bit comparator using dataflow

description.

08 Marks

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity magcomp is

 Port (a : in STD_LOGIC_VECTOR (3 downto 0);

 b : in STD_LOGIC_VECTOR (3 downto 0);

 aeqb : out STD_LOGIC;

 altb : out STD_LOGIC;

 agtb : out STD_LOGIC);

end magcomp;

03 marks

architecture dataflow of magcomp is

begin

aeqb <= '1' when (a = b) else '0';

agtb <= '1' when (a > b) else '0';

altb <= '1' when (a < b) else '0';

end dataflow;

05 marks

10 a) Explain the declaration of constant, variable and signal in VHDL with

example.

08 Marks

 Constants

A constant holds a specific value of a type that cannot be changed within the design

description, and therefore is usually assigned upon declaration. Constants are generally

used to improve the readability of code.

Example:

constant width: integer := 8;

Constants must be declared in a declarative region such as the package, entity,

architecture, or process declarative region. A constant defined in a process declarative

region is only visible to that process; one defined in an architecture is visible only to

that architecture; one defined in an entity can be referenced by any architecture of that

entity; one defined in a package can be referenced by any entity or architecture for

which the package is used.

03 marks

Signals

Signals can represent wires, and they can therefore interconnect components. As wires,

signals can be inputs or outputs of logic gates. Signals can also represent the state of

memory elements.

Example:

signal count: bit_vector(3 downto 0);

Signals can be initialized as follows

signal count: bit_vector(3 downto 0) := "0101";

03 marks

Variables

Variables are used only in processes and subprograms and therefore they are declared

in the declarative region of a process or subprogram. Variables should be initialized

before being used. For the value of a variable to be used outside of a process, it must

be assigned to a signal of the same type.

Example:

variable result: integer := ‘0’;

Variable assignments are immediate, not scheduled, as with signal assignments.

02 marks

 b) Write a VHDL program for half adder in behavioral description. 08 Marks

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity halfadder is

 Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 sum : out STD_LOGIC;

 cout : out STD_LOGIC);

end halfadder;

03 marks

architecture Behavioral of halfadder is

begin

process(a,b)

begin

if(a = '0' and b = '1') then

 sum <= '1';

 cout <= '0';

elsif(a = '1' and b = '0') then

 sum <= '1';

 cout <= '0';

elsif(a = '1' and b = '1') then

 sum <= '0';

 cout <= '1';

else

 sum <= '0';

 cout <= '0';

end if;

end process;

end Behavioral;

05 marks

