1 a. Decimation is a process of dropping the samples without violating sampling

theorem. The factor by which the signal is decimated is called as decimation factor and it
is denoted by M. It is given by,

yv(m) =w(mM) = Z by x(mM — k)

k=—oo

where w(n) = Zy__, bpx(n — k)

X (n) Digitﬂl_ Low w (1) Down y (n)
—— | Pass Filter

Sampler —

L

Figure 1.1 : Decimation process

Interpolation is a process of increasing the sampling rate by inserting new samples in between.

The input output relation for the interpolation, where the sampling rate is increased by a factor L,
isgivenas, y (m) =

5o byw(m — k) where w(n) = {x (7):m =0 410 $2L 43L w.c.
0, otherwise

Insert Low poss yimd
b}
(D L -19 HZCM - fiter
Zeros
Sonrpling LF bR
Frequency &

Figure 1. 2: Interpolation process
X(n)={0,2,4,6,8}%
L=2 bk ={0.5, 1, 0.5}
Insert L-1 =2-1=1zero = w(n)={0,0,2,0,4,0,6,0,8, 0}
y(m) = w(n) * bk

={0,0,1,2,3,4,5,6,7,8,4,0}

1 b. DSP is a technique of performing the mathematical operations on the signals in digital domain. As
real time signals are analog in nature we need first convert the analog signal to digital, then we have to
process the signal in digital domain and again converting back to analog domain. Thus ADC is required
at the input side whereas a DAC is required at the output end. A typical DSP system is as shown in

figure 1.3.

Input -

Signal

Figure 1.3 : A typical DSP system

A computer or a processor is used for digital signal processing. Antialiasing filter is a LPF which
passes signal with frequency less than or equal to half the sampling frequency in order to avoid
Aliasing effect. Similarly at the other end, reconstruction filter is used to reconstruct the samples from

the staircase output of the DAC (Figure 1.4).

Anri:}]iuging L A DspP DAC Antialiasing
Filter Filter
Figure 1.4: The block diagram of a DSP system
05 T = e T T T T o — oy
2f AT
(a) 193 o — pr—
0 — A | L ' -) |
0 15)2 25 g Y
o |r (I Ts |;I u:«rs 1)11 0,'45 1.3
& 193 ? ?
HQJ i A A
0.5 0.1 0.15 ll'_‘ 02 ,";*) 3ﬁ IJ‘4 ﬁ;‘.ﬁ 0.5
<) i"‘ {
H%, 1] 1 d I 'l 1] | -
0.1 0.15 0.2 025 03 0.35 04 0.45 0.5
d)
)
llJ | T
| SEE— A | J
0.1 0.15)2)25 03 0.35 0.4 045 0.5
5 T T T Y T -1
=W e~
(e) .2 " ‘
| || CPSSSSSISTS FREESSEST S 1 1 L I
0 0.15 0.2 n2s 0 0.35 04 0.45 0.5

Figure 1.5 : Signals that occur in a DSP system

1 C. The number of complex multiplications = (g)log2 N = (1024/2 X log, 1024)

=5120
The number of Real multiplications =4 x 5120 = 20480
2a.
In order to implement the above operation in a DSP, the architecture requires the
following features
i. A RAM to store the signal samples x (n)
ii. A ROM to store the filter coefficients h (n)
iii. An MAC unit to perform Multiply and Accumulate operation
iv. An accumulator to store the result immediately
v. A signal pointer to point the signal sample in the memory
vi. A coefficient pointer to point the filter coefficient in the memory
vii. A counter to keep track of the count

viii. A shifter to shift the input samples appropriately

2 b. While processing the data samples coming continuously in a sequential manner, circular

buffers are used. In a circular buffer the data samples are stored sequentially from the initial

location till the buffer gets filled up. Once the buffer gets filled up, the next data samples will get

stored once again from the initial location. This process can go forever as long as the data

samples are processed in a rate faster than the incoming data rate.

Circular Addressing mode requires three registers viz

a. Pointer register to hold the current location (PNTR)

b. Start Address Register to hold the starting address of the buffer (SAR)
c. End Address Register to hold the ending address of the buffer (EAR)
There are four special cases in this addressing mode. They are

a. SAR < EAR & updated PNTR > EAR

b. SAR < EAR & updated PNTR < SAR
c. SAR >EAR & updated PNTR > SAR
d. SAR > EAR & updated PNTR < EAR

The buffer length in the first two case will be (EAR-SAR+1) whereas for the next tow cases
(SAR-EAR+1)

The pointer updating algorithm for the circular addressing mode is as shown below.

: Pomter Updating Alcoiitlm

Updated PNTR. +— PNTR * iiwrement

If SAR < EAR
A of Updated PNTR > EAR then
New PNTR. «+—— Updated PNTR. — Buffer size
And if Updated PNTR < SAR then
New PNTR Updated PNTR. + Buffer sze

If SAR -~ EAR
And if Updated PNTR > § AR-then
New PNTE. *+—— Updated PNTR - Buffer size
Al if Updated PNTR. < EAR then
New PNTR. -4—— Updated PNTR. + Buffer sze

Else
New PNTR. «+—— Updated PNTR

Loty addAaens Lo vdda,

UpdemA Ve . . — —
C AfL £ (
C -
, l \ Aw \\
Rhews P i
éq,‘.\ﬂ-ls ;: nvt\arl,
k AN e | i g
g / FRT 1| /
| [
| ;)
Up dood R - === e £
g addaom
{h,"\‘n oncicdq
an 'y SARCE AL § Cag Uiy AL Cene. §
Lipe laled FROTR > EA L v priaQ'.‘(i FROTRE. € SAR
Oy Ai‘.’—\ 'r}] kl‘ \>
r‘,;wl"\léﬂ PROTE— — — — "
= AR .
1 EAL ¢\
(TT‘L_Q! \
Prth e——
'A:'q wai
;‘ N F N 14 - . /‘,’
CA ¢ . / "’w v
{ CA K
| '\3 add)

Figure 2.1 : Special cases in circular addressing mode

2 c. A typical DSP device should be capable of handling arithmetic instructions like ADD, SUB,
INC, DEC etc and logical operations like AND, OR , NOT, XOR etc. The block diagram of a
typical ALU for a DSP is as shown in the figure 2.2. It consists of status flag register, register

file and multiplexers.

Figure 2. 2: ALU

Status Flags : ALU includes circuitry to generate status flags after arithmetic and logic
operations. These flags include sign, zero, carry and overflow.

Overflow Management : Depending on the status of overflow and sign flags, the saturation

logic can be used to limit the accumulator content.

Register File : Instead of moving data in and out of the memory during the operation, for better

speed, a large set of general purpose registers are provided to store the intermediate results.

2 d. Ideally whole memory required for the implementation of any DSP algorithm has to reside
on-chip so that the whole processing can be completed in a single execution cycle. Although it
looks as a better solution, it consumes more space on chip, reducing the scope for implementing
any functional block on-chip, which in turn reduces the speed of execution. Hence some other
alternatives have to be thought of. The following are some other ways in which the on-chip

memory can be organized.

a. As many DSP algorithms require instructions to be executed repeatedly, the instruction can be

stored in the external memory, once it is fetched can reside in the instruction cache.

b. The access times for memories on-chip should be sufficiently small so that it can be accessed

more than once in every execution cycle.

c. On-chip memories can be configured dynamically so that they can serve different purpose at

different times.
3a.

Architectural Feature

TMS320C25

DSP 56000

Data representation
format
Hardware multiplier

ALU

Internal buses

External buses

On-chip Memory

Off-chip memory

Cache memory
Instruction cycle time
Special addressing
modes

Data address
generators

Interfacing features

16-bit fixed
16 x 16

32 bits

16-bit program bus

16-bit data bus

16-bit
program/data bus

544 words RAM

4K words ROM

64 K words
program
64k words data

100 nsec

Bit reversed

1
Synchronous serial
Vo

DMA

24-bit fixed point
24 x 24
56 bits

24-bit program bus
2 x 24-bit data
buses

24-bit global

databus
24-bit program/data
bus

512 words PROM
2 x 256 words data
RAM

2 x 256 words data
ROM

64K words program
2 x 64K words data

97.5 nsec.

Modulo
Bit reversed

2

Synchronous and

Asynchronous serial
/O DMA

3 b. Barrel shifter: provides the capability to scale the data during an operand read or write.

No overhead is required to implement the shift needed for the scaling operations. The’54xx
barrel shifter can produce a left shift of 0 to 31 bits or a right shift of 0 to 16 bits on the input
data. The shift count field of status registers ST1, or in the temporary register T. Figure 3.1

shows the functional diagram of the barrel shifter of TMS320C54xx processors.

| DB15-DB0 |
40 | CB15-CB0 |
16]
B e b
40 B#A p| c|16
MUX

| Sign control |-«— SXM

v

L-4— T :-16 through31 range

TC (test bit) ———» B(:ir{gltgh;fﬁr - 4— ASM(4-0¥: =16 through 15 range

| ¢— Instrutlionregister immediate: —16
through45 or 0 through 15 range

ALU < ®
140
MSW/LSW
C33U Write select
Legend:
A Accumulator A
16 B Accumulator B
C CBdatabus
! D D& databus
A T Tregister
[EBV5—EBO |

Figure 3.1 : Functional diagram of Barrel shifter

The barrel shifter and the exponent encoder normalize the values in an accumulator in a single
cycle. The LSBs of the output are filled with 0s, and the MSBs can be either zero filled or sign
extended, depending on the state of the sign-extension mode bit in the status register ST1. An
additional shift capability enables the processor to perform numerical scaling, bit extraction,

extended arithmetic, and overflow prevention operations.

3c.i)* AR3 -0 =200h—40h =1CO0h

i) * AR3+ =200h + 1 =201h

iii) *+AR3 (50h) = 200h + 50h = 250h

iv) *AR3 — 0B = 200h - 40h (with reverse carry propagation) = 27Fh.
4 a. Pipeline operation of TMS320C54xx Processors:

The CPU of ‘54xx devices have a six-level-deep instruction pipeline. The six stages of the
pipeline are independent of each other. This allows overlapping execution of instructions. During
any given cycle, up to six different instructions can be active, each at a different stage of
processing. The six levels of the pipeline structure are program prefetch, program fetch, decode,

access, read and execute.

1 During program prefetch, the program address bus, PAB, is loaded with the address of the next
instruction to be fetched.

2 In the fetch phase, an instruction word is fetched from the program bus, PB, and loaded into

the instruction register, IR. These two phases from the instruction fetch sequence.

3 During the decode stage, the contents of the instruction register, IR are decoded to determine
the type of memory access operation and the control signals required for the data-address

generation unit and the CPU.

4 The access phase outputs the read operand’s on the data address bus, DAB. If a second operand
is required, the other data address bus, CAB, also loaded with an appropriate address. Auxiliary
registers in indirect addressing mode and the stack pointer (SP) are also updated.

5 In the read phase the data operand(s), if any, are read from the data buses, DB and CB. This
phase completes the two-phase read process and starts the two phase write processes. The data

address of the write operand, if any, is loaded into the data write address bus, EAB.

6 The execute phase writes the data using the data write bus, EB, and completes the operand

write sequence. The instruction is executed in this phase.

Loads IR withthe | 5a¢s DB with the data1 read operand

contents ot PH,

Loads CB with the dataZ read operand

Loads PAB with decodes the IR'S | pads EAB with the datal read
the PC's contents rontents address, if required
|) }
Prefetch |Fetch [Decode |Access |Read.|Execute
Loads FB with
the fetrhed Loads CAB with the datal read Executes the
nstruction word address. ifrequired instruction & loads
Loads DAB with the data? read EB with wirte data

address. ifrenquired
Updates auxilian™edsters &stack

pointer

Figure 4. 1 : Pipeline operation of TMS320C54XX processor

LD *AR3+ A
ADD #1000h, A
STL A, *AR3+

Cycles | Prefetch | Fetch | Decode | Access | Read | Exe& |AR3 |A
Write

1 LD 85

2 ADD LD 85

3 STL ADD LD 85

4 STL ADD LD 86

5 STL ADD LD 86 Sh

6 STL LD 87 5h

7 STL ADD 87 1005h

8 STL 87 1005h

4 b.

Bit Name Function
15-12 Reserved Reserved; always read as 0.
11 Soft Used in conjunction with the free bit to determine the state of the timer
Soft=0,the timer stops immediately.,
Soft=1,the timer stops when the counter decrements ta (.
10 Free Use in conjunction with the soft bit
Free=0.the soft bit selects the timer mode
free=1,the timer runs free
Bit Name Function
0-6 PSC Timer prescaler counter, specifies the count for the on-chip timer
5 TRB Timer reload. Reset the on-chip timer.
al TSS Timer stop status, stop or starts the on-chip timer,
3-0 TDDR [Timer divide-down ration

Figure 4. 2 : Functions of various bits in TCR register

4c,

.global _c_int00

X
'&J’

text

_c_int0o:

SSBX
LD
LD
LD
MPY
LD
LD
LD
MPY
ADD
LD
LD
LD
MPY
ADD

LD
STL
STH
NOP
.end

6a.i)log,N=7

ii) - = 64

ii) 7 log,N = 7 x 64 = 448

SXM
#h, DP
@h, T
#x, DP
@x, A
#h, DP
@h+1, T
#x, DP
@x+1, B
A.B

#h, DP
@h+2, T
#x, DP
@x+2, B
A.B

asect “Input Samples™, 3
Ausect ““outout™, 2
ausect ““coefficient™”, 3

:Select sign extension mode
:Select the data page for coefficients
:get the coefficient h(0)
iselect the data page for input samples
: A =x(n) * h(0)
: select the data page for coefficients
: get the coefficient h(1)
:select the data page for input singals
: B=x(n-1) * h(l)
: B =x(n)*h(0) + x(n-1)*h(1)
: select the data page for coefficients
: get the coefficient h(2)
iselect the data page for input samples
: B=x(n-2) * h(l)

: B =x(n)*h(0)+ x(n-1)*h(1) + x(n-2) * h(2)

: select the data page for outputs
: save low part of output
: save high part of output
: No operation

iv) Nil

6 b.

_bitrev:
STM #x0,AR1
STM #X0R,AR2
STM #8, ARO
STM #7, AR3
loop:

AR1 points to xn0
-| AR2 points to X0R
Index=8, count=7

e

v

Copy x(n) to location of

Here, AR1 is used as pointer to x(n). AR2 is used as pointer to X(k) locations. ARO is loaded
with 8 and used in bit reverse addressing. Instead of N/2 =4, it is loaded with N=8 because each
X(K) requires two locations, one for real part and the other for imaginary part. Thus, x(n) is

stored in alternate locations, which are meant for real part of X(k). AR3 is used to keep track of

LD *AR1+,A
STL A, "AR2+0B
BANZ loop,

.. | AR3=AR3-1 |
RET Tea

*AR3-

——d e

--=7 X(K) in a bit reversed

-

ves

T Return

Figure 6.1 : Subroutine program for bit reversed address generation

number of transfers.

6c¢C

MVMM AR1,ARS

STM#TEMP1.AR4 »

Replace AR with AR/4

LD *ARS, -2, A i

!

STL A, *AR5+ } I

Store AR/2 in TEMP1

STL ‘&L-. le*J&LR4+,_:-——"’_—'—

LD *ARS, -2, A

Replace Alm with Alm/4

STL A, *ARS-

:

STL A, 1, *AR4- oo >

Store Alm/2 in TEMP2

LD *AR2, -2, A

.

STL A, *AR2+

Replace BR with BR/4

LD *AR2, -2, A

3

Replace Blm with Bl/4

STL A, *AR2-],

AR3

v
(1) Ag= Ar + BR x Wr= B/ X W,

AR5 AR2

LD #0, A)
MPY *AR2+, *AR3+, A -~
MAS *AR2-, *AR3, A

A=BR xWR

'

_______ h _ _
ADD *ARS, 15, A A=BR x WR =Bl x WI
ADD #1,14,A ~~~~__ v
STH A, 1,"AR5+ ~~._ ~~~--, | Make AR 32 bits and
A= AR + BR x WR — Bl x WI
‘““u_ I
Round & store
AR5 AR2 AR3
¥
(2) A=A + B xWg+BrxW, .."J A= BR x WI

-

-
-

LD #0, A B
MPY *AR2+,*AR3-, A~
MAC *AR2-*AR3, A _.---"~"

"~} A=BIXWR+BRxXWI

Y

'

ADD *ARS5,15, A ~--
ADD #1,14, A __
STHA, 1, *AR5-"~~__

-
-
= -

‘-""-.h

Make Al 32 bits and
A=Al + BlxWR + BR x WI

'

Round & Store

Load A with AR scaled by 2

Y

From this, subtract new AR

Y

J Store lower 16 bits as BR

(4) B= A— (B xWg +BrxW))

LD *AR4-, A
SUB *AR5-, A
STL A, "AR2-

RET
nop
nop

7 a.

The timing sequence of memory access is shown in fig. 7.1. There are two read operations, both
referring to program memory. Read Signal is high and Program Memory Select is low. There is
one Write operation referring to external data memory. Data Memory Select is low and Write
Signal low. Read and write are to memory device and hence memory strobe is low. Internal
program memory reads take one clock cycle and External data memory access require two clock
cycles.

MSTRB —\

|

Address :X.)}(X
Date — et —(rem— KW >——
RIW————— b /
CSn G RN o o o
bS — L o =

Figure 7.1 : Memory interface signals for read- read — write operations

7b.

Number of memory mapped registers for DMA are 6x(5+4) and some common registers for all
channels, amounting to total of 62 registers required. However, only 3 (+1 for priority related)
are available. They are DMA Priority & Enable Control Register (DMPREC), DMA sub bank
Address Register (DMSA), DMA sub bank Data Register with auto increment (DMSDI) and
DMA sub bank Data Register (DMSDN). To access each of the DMA Registers Register sub
addressing Technique is employed. The schematic of the arrangement is shown in fig. 7.13. A set
of DMA registers of all channels (62) are made available in set of memory locations called sub
bank. This avoids the need for 62 memory mapped registers. Contents of either DMSDI or
DMSDN indicate the code (1’s & 0’s) to be written for a DMA register and contents of DMSA

refers to the unique sub address of DMA register to be accessed. Mux routes either DMSDI or

MSDN to the sub bank. The memory location to be written

Subbank DMSDI ¢—»
Access mux
registers DMSDN |j4—»
v W
DMSA
Subbank
Address register
—'

Figure 7. 2 : Register subaddress technique

DMSDI is used when an automatic increment of the sub address is required after each access.

Thus it can be used to configure the entire set of registers. DMSDN is used when single DMA

register access is required. The following examples bring out clearly the method of accessing the
DMA registers and transfer of data in DMA mode.

7cC.

Initialize processor with respect to desired speed, internal registers: PMST, BSCR,

SWSR. Initialize internal timer for sampling period of ADC. Apply analog input signal. Send
start conversion through TOUT. Continue with any other program execution. ADC interrupts
DSP after conversion on INT1. DSP reads 10 bit data and converts to 8 bit by shifting to right. It
then processes the sample and sends this data to DAC. DAC converts the data back to analog.

The corresponding program is as follows.

INTH [INT1
TOUT —[>o—> CSTART
CLKOUT »CLKIN <+— Analog in
IOSTB |

RD | ADC

R/ W
ry * CS
Do-Dg —| 1[Do-Dg
n-DA Analog
| :LDO D, DAGUTH e
Ac-Ass Addr | |WR .
decoder | ouT2
CS
Figure 7.3 : Interfacing DSP to ADC and DAC
buffer: .bss sample, 1 :data buffer
* text

_c_int00:

STM #0X0500.5P initialize Stack Pointer

SS5EX INTM . disable all interrupts

CALL init_DSP : initialize DSP processor

CALL init_timer sinitialize timer

STM #0XFFFF,IFR :pending interrupts cleared

ORM #0002H.IME :INT 1 unmasked

RSBX INTM . enable all interrupts
: Initialize DSP Processor
init_DSP

PMST VAL set 00AOR:; MC & OVLY. interrupt vector is set

BSCR_VAL .set 0000h ; bank switching reset, 64K only

SWWSE_VAL set 2000h s/ w wait, 2 clock wait states

Aext

init._ DSP:

LD #0,DP :data page initialized

STM #0,CLKMD

STM #0,CLKMD
STM #0X4007, CLEMD :processor speed set
STM #PMST_VAL, PMST :initialize PMST
STM #BSCR_V AL, BSCR :initialize BSCR
STM #SWWSR_VAL, SWWSR :initialize SWWSR
SSEX OVM : identify overflow
SSBX SXM :sign extension set
RET :return from subroutine
NOP
NOP

. Initialize Timer

PRD_VAL .set 9999 : FSAMPLING / FCPU

TCR_VAL .set 0000 :start timer

Jdext

init_timer;
STM PRD VAL, PRD :initialize timer period register
STM TCR_VAL.TCR :initialize timer count register
RET :return from subroutine
NOP
NOP

ISR for ADC Read & DAC Write

ADC DATA IN_ addr .set 05h ;port address of ADC
DAC DATA OUT_addr .set 07h ;port address of DAC

text
PORTR ADC_DATA_IN_addr, sample ; read data from ADC
LD sample,-2,A : 10 bit data to 8 bit
STL A, sample . store in buffer
PORTW sample, DAC_DATA_OUT_addr ; write to DAC
RET return from subroutine
NOP
NOP

8a.

Synchronous Serial Interface: There are certain 1/0O devices which handle transfer of one bit at
a time. Such devices are referred to as serial 1/0 devices or peripherals. Communication with
serial peripherals can be synchronous, with processor clock as reference or it can be

synchronous. Synchronous serial interface (SSI) makes communication a fast serial

communication and asynchronous mode of communication is slow serial communication.
However, in comparison with parallel peripheral interface, the SSI is slow. The time taken

depends on the number of bits in the data word.

CODEC Interface Circuit: CODEC, a coder-decoder is an example for synchronous serial 1/0.
It has analog input-output, ADC and DAC. The signals in SSI generated by the DSP are DX:
Data Transmit to CODEC, DR: Data Receive from CODEC, CLKX: Transmit data with this
clock reference, CLKR: Receive data with this clock reference, FSX: Frame sync signal for
transmit, FSR: Frame sync signal for receive, First bit, during transmission or reception, is in
sync with these signals, RRDY:: indicator for receiving all bits of data and XRDY' indicator for
transmitting all bits of data. Similarly, on the CODEC side, signals are FS*: Frame sync signal,
DIN: Data Receive from DSP, DOUT: Data Transmit to DSP and SCLK: Tx / Rx data with this

clock reference. The block diagram depicting the interface between TMS320C54xx and CODEC
is shown in fig. 8.1. As only one signal each is available on CODEC for clock and frame
synchronization, the related DSP side signals are connected together to clock and frame sync
signals on CODEC. Fig. 8.2 and fig. 8.3 show the timings for receive and transmit in SSI,

respectively.

T DX » DIN
M

g DR » DOUT
3

2 FSX FS*

0

C FSR CODEC
5

4 CLKX SCLK
X

x CLKR

Fig. 8.1: SSI between DSP & CODEC

CLKR

= x> 2 S S ——
ﬁac_..w.,u ¥ O £ S o [0]
- e T == = 1 x © ©O o N
[ow] ox Z g8 7 G
[— llh...rl.l.m...l llllll ~ fe5) [&) n_n.v mv - [Ep— Ilurlul...-ur.l..,.r“ IIIIII
. @ < = e -~
Coo] 38 &< [oo]
- - -_— > @ - .) el R
-—— Illurmu-.nnl.rlrr IIIIIII 5] o o he] ..hl. o ey
.\.C?. - X & T ¢ G?._
- L e N NN o m m o = - - e e o mmen o o oEw .
—_— c
8o g 2 %
llllllllllll S @ +— ..nm) -] el]
(5} c ..nm c C
— o © ®© ° -— [S SR [——
- e el e - - o 8 . O o v
i o= O 4= =
S SN N SN L 22533 Sy N B S
= c o]
T, @ 2 5 &
IR R R U N W NN - ...nc ..m 5~ - Illnlluu.ﬂ.rul |||||||
D £ - 2255 [@o]
r. = = T S 2 « - —_—— e ———— =
Ll e N - & - m m [75) |m
e E B s S ﬁB1u
—Balu [i¥] m m (@] m ﬁWu LI BN R S -
|||||—.1.F.rr.n1ﬂ._.rf|||| - = o m o X _H-MB_"”._J.”_
o o 8 E £ 2 £ - |||.||i.nar|||| -
-— e . IIMWIW.PIIII - _._...I._.._ .m M ” ko] ln%
_H. . o L o o om o
Dumu 2 E = 5 - . - ..rl |||||
il il i > m [4+] w e —Du.d._
[m«] ®“ T g £ © 35 - - e = - ——
Illlll"uu.nﬂuul.” llllllll .W“u = LL m @ m _H_HD_._U:J.H_
m._nn_.ﬂ__ [% mu I m nVnAu - R el
L I Luuu.nﬂnu.r IIIIIII = ﬂ m ..IH. [ﬁﬂuﬁ_
Bﬁ_; = © [Z2 0 = -— il N e R R
- e - mu ..m W mv A ﬁ:B?J
= — | . —
— Lo i e i W e e frai w I
— N — Q
m r.nlb a5} [&) W - ﬂllll - s e e o .
——— e e ——— 5 9 2 &
o c © 2 =
c < - 4 (41 Lol e T R B Lo B
llllll -l - - = e o O
= F 2 9 o
D — o S O e e el -—
== mm e mm o e == omm oEm oEm -— . % — > <5} + _hﬁuud
hust o = c c — —
H.anﬂu;} =2 = s = - Ll el -
- - llllu...wulr...iur. IIIII - m w = n .m _H..nﬁallH_
“ra.nlu +— % = n_r.v o) -—— — - —— - -—
IIIII b - - n.. - .w Y
= X 2 7 © W > > m
e 3 . (D) —_ : 1
o S x> 2 3« o B >
& _H w O x 2 5 5
< O X © £ &

Transmit Timing for S51

F"l
ata

8 b.
DSP Based Biotelemetry Receiver:
Biotelemetry involves transfer of physiological information from one remote place to another for
the purpose of obtaining experts opinion. The receiver uses radio Frequency links. The schematic
diagram of biotelemetry receiver is shown in fig. below. The biological signals may be single
dimensional signals such as ECG and EEG or two dimensional signals such as an image, i.e.,
X-ray. Signal can even be multi dimensional signal i.e., 3D picture. The signals at source are
encoded, modulated and transmitted. The signals at destination are decoded, demodulated and
analyzed.

An example of processing ECG signal is considered. The scheme involves modulation of
ECG signal by employing Pulse Position Modulation (PPM). At the receiving end, it is
demodulated. This is followed by determination of Heart beat Rate (HR). PPM Signal either
encodes single or multiple signals. The principle of modulation being that the position of pulse
decides the sample value. The PPM signal with two ECG signals encoded is shown in fig. below.
The transmission requires a sync signal which has 2 pulses of equal interval to mark beginning of
a cycle. The sync pulses are followed by certain time gap based on the amplitude of the sample
oflst signal to be transmitted. At the end of this time interval there is another pulse. This is again
followed by time gap based on the amplitude of the sample of the 2nd signal to be transmitted.
After encoding all the samples, there is a compensation time gap followed by sync pulses to
mark the beginning of next set of samples. Third signal may be encoded in either of the intervals

of 1st or 2nd signal. With two signals encoded and the pulse width as tp, the total time duration

is 5tp.
\r— Demodulator || Analog Signal - DSP .| Digital
Processing interface
v
Multiple
channel DAC
Y. ¥
ECG HR

Figure 8.4 : Bio- telemetry receiver

An example of processing ECG signal is considered. The scheme involves modulation of

ECG signal by employing Pulse Position Modulation (PPM). At the receiving end, it is
demodulated. This is followed by determination of Heart beat Rate (HR). PPM Signal either
encodes single or multiple signals. The principle of modulation being that the position of pulse
decides the sample value. The PPM signal with two ECG signals encoded is shown in fig. 8
.5.The transmission requires a sync signal which has 2 pulses of equal interval to mark beginning
of a cycle. The sync pulses are followed by certain time gap based on the amplitude of the
sample of 1st signal to be transmitted. At the end of this time interval there is another pulse. This
is again followed by time gap based on the amplitude of the sample of the 2nd signal to be
transmitted. After encoding all the samples, there is a compensation time gap followed by sync
pulses to mark the beginning of next set of samples. Third signal may be encoded in either of the
intervals of 1st or 2nd signal. With two signals encoded and the pulse width as tp, the total time
duration is 5tp.

Ly

Sync ¢ Ve | l——— (s ——pi SYNC
¥ + t ts > ! ts

pulses - L 'pulses

tp: each pulse interval
. . T

t;: pulse interval corresponding to sample value of 1™ signal
. . d .

t;: pulse interval corresponding to sample value of 2" signal

t3: compensation time interval

Figure 8.5: A PPM signal with 2 ECG signals

8c.

An Image Processing System: In comparison with the ECG or speech signal considered so far,
image has entirely different requirements. It is a two dimensional signal. It can be a color or gray
image. A color image requires 3 matrices to be maintained for three primary colors-red, green
and blue. A gray image requires only one matrix, maintaining the gray information of each pixel
(picture cell). Image is a signal with large amount of data. Of the many processing, enhancement,
restoration, etc., image compression is one important processing because of the large amount of

data in image.

To reduce the storage requirement and also to reduce the time and band width required to
transmit the image, it has to be compressed. Data compression of the order of factor 50 is
sometimes preferred. JPEG, a standard for image compression employs lossy compression
technique. It is based on discrete cosine transform (DCT). Transform domain compression
separates the image signal into low frequency components and high frequency components. Low
frequency components are retained because they represent major variations. High frequency
components are ignored because they represent minute variations and our eye is not sensitive to
minute variations. Image is divided into blocks of 8 x 8. DCT is applied to each block. Low
frequency coefficients are of higher value and hence they are retained. The amount of high
frequency components to be retained is decided by the desirable quality of reconstructed image.

Forward DCT is given by eq (1).

o 2x %y .
fra = li-‘..t-‘_. >N f., m_u;((“" Fhur, (LY v
| 4 e 16 16

Since the coefficients values may vary with a large range, they are quantized. As already noted
low frequency coefficients are significant and high frequency coefficients are insignificant, they
are allotted varying number of bits. Significant coefficients are quantized precisely, with more
bits and insignificant coefficients are quantized coarsely, with fewer bits. To achieve this, a
quantization table as shown in fig. 8.20 is employed. The contents of Quantization Table indicate
the step size for quantization. An entry as smaller value implies smaller step size, leading to
more bits for the coefficients and vice versa.

The quantized coefficients are coded using Huffman coding. It is a variable length coding
Huffman Encoding. Shorter codes are allotted for frequently occurring long sequence of 1’s &
0’s. Decoding requires Huffman table and dequantization table. Inverse DCT is taken employing
eq (3). The data blocks so obtained are combined to form complete image. The schematic of

encoding and decoding is shown in fig. 8.6.

foy = éiirncr . cos(

w=0 v=0

(2x+Dur. 2y+1)vr
———)cos(———

Quantization Huffman Compressed

D{"J:I“] g encode data
F Y F Y
8x8 block
1o Dot Quantization Huffman ENCODER
table table
Compressed Huffman | dequantize .
data . decode — IDCT
] T ‘
Huffman Dequantize 8x 8 block
DECODER table table

Figure 8.6 : JPEG encoder and decoder
5a.1i).3125 as Q15 number
Q15 notation=.3125 x 2% = 10,240 in decimal=2800h
i)) -.3125 as Q15 number
Q15 notation=.3125 x 2'° = 10,240 in decimal=2800h
Since the number is negative (-.3125), hexadecimal equivalent of 10,240 (i.e) 2800h should be
subtracted from FFFFh to get D7FFh
Hence -.3125 = - (10,240 decimal)= -(2800h) = FFFF-2800 = D7FFh
iii) 3.125 as Q7 number
3.125X 2"=190 h

5b.
Insert Low poss ytm)
() w-13 xZCn) - flter [
Zeros
sompling Lf L&

Frequency £

Figure 5.1 : Interpolation process

Example:

X(n)=]0246810] .input sequence
Xz(n)=[0020406080100] ;zero inserted sequence
h(n)=[0.510.5] ;impulse sequence
Y(n)=[001234567891050] :interpolated sequence y(n)
.mmregs

def ¢ _int00

.sect "samples"

InSamples .nclude "data_in.dat" : Incoming data (from a file)
InSampCnt .set 50 : Input sample count
.bss sample,3,1 : Input samples: x(n),x(n-1),x(n-2)
OutSamples .bss y,250,1 : Allocate space for y(n)s
SampleCnt .set 250 : Number of samples
Coeff sect "Coeff"
-word 2560, 3072, 512 : Filter coeffs h(4), h(9), h(14)
-word 2048, 3584, 1024 : Filter coeffs h(3), h(8),
h(13)
-word 1536, 4096, 1536 : Filter coeffs h(2), h(7),
h(12)
-word 1024, 3584, 2048 i Filter coeffs h(l), h(6),
h(11)
word 512, 3072, 2560 : Filter coeffs h(0), h(3),
h(10)
CoeffEnd
Nml set 2 ; # of coeff/interp factor-1
IFml set 4 ; interpolating factor-1
text
_c_int00:
ssbx SXM : Select sign extension mode
rsbx FRCT
stm #InSamples.ar6 : ar6 points to the input samples
stm #InSampCnt-1,ar7 : ar7 = input sample count - 1
stm #0utSamples,ars : ar5 points to the output samples
rpt #SampleCnt-1 : Reset ouput samples memory

st #0,#ars+

INTloopl:

INTloop2:

NXTcoeff:

sample

buffer

samples

stm #OutSamples,ars
stm #sample,ar3

rpt #Nml

st #0, Fard+

stm #CoeffEnd-1.ar2
stm #1Fml.ard

; ard points to the output samples
: ard points to current in samples
: Reset the input samples

; ar2 points to the last coeff

: ard = Interpolation factor -1

stm #sample+Nml.,ar3 : ar3 points to last sample in use

stm #Nml,arl
1d #0.A

mac *ar2-;#ar3-. A

banz NXTcoeff,*arl-

banz INTloop2,*ar4-
sth A,1,7ar5+ :

nop

.end

stm #sample+Nml-1, ar3

rpt #Nml-1
delay *ar3-

Id *aré6+,A

stm #sample,ar2
stl A, %ar2

banz INTloop1.*ar7-
nop

nop

: arl = samples for use
:A=0

: Compute interpolated

Store the interpolated sample
: Delay the sample array
: Get the next sample
: Place it in the sample
for all

: Repeat input

5c¢.

N1 | .. :
Signed Biary
Multipher — N3
N2 '
NI(16 bit) N2(16 bit) N3(16 bit)
QO QO Qo
Q0 Q15 Q15
Q15 Q15 Q30

Figure 5.1 : Multiplication of numbers represented using Q notations

Program to multiply two Q15 numbers
ie NIxN2=NI1*N2
Where

N1 &N2 are 16-bit numbers in Q15 notation
N1xN2 is the 16-bit result in Q15 notation

mmregs : memory mapped registers
.data : sequential locations
N1: word 4000h : N1=0.5 (Q15 numbers)
N2: word 2000h : N2=0.25 (Q15 numbers)
NI1xN2 space 10h : space for N1xN2
Jdext
ref _c_int00
sect “vectors ™
RESET: b _c_int00 : reset vector

nop

nop

_c_int00
STM #NI1,AR2 :AR2 points to N1
LD *AR2+, T :T reg =N1
MPY #*AR2+,A :A= NI #N2in Q30 notation
ADD #1,14, A :round the result
STH A. Ll #AR2 :save N1 *N2 as Q15 number
NOP
NOP
.end

5 d. An infinite impulse response (IIR) filter is represented by a transfer function, which is a ratio
of two polynomials in z. To implement such a filter, the difference equation representing the

transfer function can be derived and implemented using multiply and add operations. To show

such an implementation, we consider a second order transfer function given by

-1

.
FA

H (=)= IJD+IJI:__I +b2:’__,,
l—a,z7 —a,z ~
W(ﬁ,l E
o y(n)

z(#) -+
‘ +

]

2] b
@ — -
'::_J—I [y
W l:ﬂ'. — 2)

Figure 5.2 : Second order IIR filter

w(n) = x(n) + ayw(n-1) + a2 w(n-2)
y(n) = bo w(n) + b1 w(n-1) + b2 w(n-2)

-
7
g
g

2

b.-. x\yne the TCR register format
register,

Write a program to compute the s

y(n) = hox(n) + hix(n — 1) + mn 2) where where

C.

USN

. 751
PRl] 2 5‘%

) B.E. D,grﬂ’ Enmlnation, Dec.2017/y 08
Sev 59"' Se:’e;:‘; worlﬂ'm and Architecture
QA

o

Time: 3 hrs. \%}12_\ , any FIVE full questions, selectin % - Marks: 100

b.

C.

a. Mention the basic features that sho {

implement the following N™ order FI%S?;;) Zh(l)x(n -&,n- 0, 1,2,---. :

DSP processor.
Write a note on organizat

Explain the register pointer updati gomhm fo ular ”'0 -
With relevant block diagram, e the vario " arithme
/ : l'; -

40h i) *AR3 = 011} *AR3 + iii) *+AR3(50h) iv) *AR3 — - OB.

following TM§ ?"m 4XX addressing modes is used. Assume l.

Explain the pipeline operation of TMS320C54XX processor. Show

PART - A

%?om ,: :'I: :’:’ TWO questions from each parl.~

With the help of mwutwns explain de ,n
Also determine the i lated seqince y(m), if the sj

is interpolated using th@%olanonﬁlm sequence
L=2.
Explain with the block di of a DSp syste

scheme. : S
determi number of complex and real mllplil
) = = algorithms. assume N = 1024. (02 Marks)

Assuming x(k) as a complex
for computing DFT, using direct an

%.dedmunnsrmumnbbem»

S gy A

i ﬁéﬁw on-chip memory. ’/@ '

i ntentsofARB to be 200h, what will &

Sy

852 o
v

of the f9lloing sequence of instructions if the initia) value of AR3 is e Operation
6and 7

s moryloutionmmWth
L Ly -

d explain the functions of the various bits in
of three product terms iven .06 :

at three successive data hy, b are constants 2 samples stored
Use direct addressing mode. Stored in ta(0!:1:110
arks)

of operations. Also explam the p

Explain the register sub-addmss ing
Interface the TMS320C54XX 18 and an 8 bit DAC (H.C‘lm
The sampled signal oF e DAC after adjusting its size.
The start of conversion fs:idjtra "’ a flowchart for main program
and interrupt service pduting’and also write the program. / (10 Marks)
. —Q\S
8 a. With a neat bloc and timing diagram for transmit ive operation, explain

synchronous serial interface. (08 Marks)
dngmm, explam DSp based bwtelcmctry L system (06 Marks)

@/ LA

