
Fifth Semester MCA Degree Examination , Dec 2018/Jan-2019

Object Oriented Modelling and Design Pattern

16MCA51 Max Marks : 80

1a. Outline the various Object Oriented Themes. 6M
1 Abstraction
Abstraction focus on essential aspects of an application while ignoring details. This means
focusing on what an object is and does, before deciding how to implement it. Use of
abstraction preserves the freedom to make decisions as long as possible by avoiding
premature commitments to details. Most modem languages provide data abstraction, but
inheritance and polymorphism add power. The ability to abstract is probably the most
important skill required for 00 development.
2 Encapsulation
Encapsulation (also information hiding) separates the external aspects of an object, that are
accessible to other objects, from the internal implementation details, that are hidden from
other objects. Encapsulation prevents portions of a program from becoming so
interdependent that a small change has massive ripple effects. You can change an object's
implementation without affecting the applications that use it. You may want to change the
implementation of an object to improve performance, fix a bug, consolidate code, or
support porting. Encapsulation is not unique to 00 languages, but the ability to combine
data structure and behaviour in a single entity makes encapsulation cleaner and more
powerful things prior languages, such as Fortran, Cobol, and C.
3. Combining Data and Behaviour
The caller of an operation need not consider how many implementations exist. Operator
polymorphism shifts the burden of deciding what implementation to use from ilk calling
code to the class hierarchy. For example, non-OO code to display the contents of a window
must distinguish the type of each figure, such as polygon, circle, or text, and call the
appropriate procedure to display it. An 00 program would simply invoke the draw operation
on each figure; each object implicitly decides which procedure to use, based on its class.
Maintenance is easier, because the calling code need not be modified when a new class is
added.
4. Sharing
00 techniques promote sharing at different levels. Inheritance of both data structure and
behaviour lets subclasses share common code. This sharing via inheritance is one of the
main advantages of 00 languages. More important than the savings in code is the
conceptual clarity from recognizing that different operations are ail really the same thing.
This reduces the number of distinct cases that you must understand and analyze.00
development not only lets you share information within an application, but also offers the
prospect of reusing designs and code on future projects. 00 development provides the tools,
such as abstraction, encapsulation, and inheritance, to build libraries of reusable
components. Unfortunately, reuse has been overemphasized as a justification for 00
technology.
5 Emphasis the Essence of an Object
00 technology stresses what an object is, rather than how it is used. The uses of an object
depend on the details of the application and often change during development. As

requirements evolve, the features supplied by an object are much more stable than the
ways it is used, hence software systems built on object structure are more stable in the long
run. 00 development places a greater emphasis on data structure and a lesser emphasis on
procedure structure than functional-decomposition methodologies.
6 Synergy
Identity, classification, polymorphism, and inheritance characterize 00 languages. Each of
concepts can be used in isolation, but together they complement each other. The benefits
of an OQ-approach are greater than they might seem at first. The emphasis on the essential
properties of an object forces the developer to think more carefully deeply about what an
object IS and does. The resulting system tends to be cleaner, more general, and more robust
than it would be if the emphasis were only on the use of data and operations.

1b. Describe the following terms: 10M
 i) Enumeration ii) Aggregation iii) Composition iv)Abstract class
 v) Reification Give example for each.

Enumeration: An enumeration is a complete, ordered listing of all the items in a collection.
The term is commonly used in mathematics and computer science to refer to a listing of all
of the elements of a set. The precise requirements for an enumeration (for example,
whether the set must be finite, or whether the list is allowed to contain repetitions) depend
on the discipline of study and the context of a given problem.
Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ... for the
set of positive integers), but in other cases it may be necessary to impose a (perhaps
arbitrary) ordering. In some contexts, such as enumerative combinatory , the term
enumeration is used more in the sense of counting – with emphasis on determination of the
number of elements that a set contains, rather than the production of an explicit listing of
those elements.

Aggregation is a stronger form of association. An association is a link connecting two
classes. In UML, a link is placed between the “whole” and the “parts” classes with a
diamond head attached to the “whole” class to indicate that this association is an
aggregation . In aggregation, the part may have an independent lifecycle, it can exist
independently. When the whole is destroyed the part may continue to exist.
 Example :A car has many parts. A part can be removed from one car and installed into a
different car. If we consider a salvage business, before a car is destroyed, they remove all
saleable parts. Those parts will continue to exist after the car is destroyed.
Composition is really a strong form of aggregation. Composition has only one owner.
Composition cannot exist independent of their owner. Composition lives or dies with their
owner. It is represented using a filled diamond head. Composition is a stronger form of
aggregation. The lifecycle of the part is strongly dependent on the lifecycle of the whole.
When the whole is destroyed, the part is destroyed too.
Example : For example, a building has rooms. A room can exist only as part of a building. The

room cannot be removed from one building and attached to a different one. When the

building ceases to exist so do all rooms that are part of it.

Abstract class is a class that has no direct instances but whose descendant classes
have direct instances. In UML notation an abstract class name is listed in an italic (or place
the keyword {abstract} below or after the name). We can use abstract classes to define the
methods that can be inherited by subclasses. Alternatively, an abstract class can define the
signature for an operation with out supplying a corresponding method. We call this an
abstract operation. Abstract operation defines the signature of an operation for which each
concrete subclass must provide its own implementation.
Reification is the promotion of something that is not an object into an object and can be
helpful for meta applications. It is useful to promote attributes, methods, constraints, and
control information into objects so that we can describe and manipulate them as data.

2a. State the purpose of building a model. 4M
1. Testing a physical entity before building it: Medieval built scale models of

Gothic Cathedrals to test the forces on the structures. Engineers test scale models of
airplanes, cars and boats to improve their dynamics. Advancement in computation permit
the simulation of many physical structures without the need to build physical models. These
models are cheaper than building a complete system and enable early correction of flaws.

2. Communication with customers: Architects and product designers build
models to show their customers. (note: mock-ups are demonstration products that
imitate some or all of the external behaviour of a system).

3. Visualization: Storyboards of movies, TV shows and advertisements let
writers see how their ideas flow.

4. Reduction of complexity: Models reduce complexity to understand directly
by separating out a small number of important things to do with at a time.

2b. Briefly explain the class model, state model and interaction model. 4M
Class Model: represents the static, structural, “data” aspects of a system. It describes the
structure of objects in a system- their identity, their relationships to other objects, their
attributes, and their operations. Goal in constructing class model is to capture those

concepts from the real world that are important to an application. Class diagrams express
the class model.
State Model: represents the temporal, behavioural, “control” aspects of a system. State
model describes those aspects of objects concerned with time and the sequencing of
operations – events that mark changes, states that define the context for events, and the
organization of events and states. State diagram express the state model. Each state
diagram shows the state and event sequences permitted in a system for one class of
objects. Actions and events in a state diagram become operations on objects in the class
model. References between state diagrams become interactions in the interaction model.
Interaction model – represents the collaboration of individual objects, the “interaction”
aspects of a system. Interaction model describes interactions between objects – how
individual objects collaborate to achieve the behaviour of the system as a whole. The state
and interaction models describe different aspects of behaviour, and you need both to
describe behaviour fully. Use cases, sequence diagrams and activity diagrams document the
interaction model.

2c. Explain with examples : 8M
i) Value and attribute ii) Operation and Method
iii) Link and Association iv) Qualified Association

Value and attribute: Value is a piece of data. Attribute is a named property of a class that
describes a value held by each object of the class. Following analogy holds: Object is to class
as value is to attribute.
Example: Attributes of Person object .Name, birthdate, weight.
Values: JoeSmith, 21 October 1983, 64. (Of person object).

In UML List attributes in the 2nd compartment of the class box. Optional details (like
default value) may follow each attribute. A colon precedes the type, an equal sign precedes
default value. Show attribute name in regular face, left align the name in the box and use
small case for the first letter. we may also include attribute values in the 2nd compartment
of object boxes with same conventions.
Operation and Method : An operation is a function or procedure that maybe applied to or
by objects in a class. E.g. Hire, fire and pay dividend are operations on Class Company. Open,
close, hide and redisplay are operations on class window. All objects in a class share the
same operations. A method is the implementation of an operation for a class.
 E.g. In class file, print is an operation you could implement different methods to print files.
Same operation may apply to many different classes. Such an operation is polymorphic.

In UML List operations in 3rd compartment of class box. List operation name in regular face,
left align and use lower case for first letter. Optional details like argument list and return
type may follow each operation name. Parenthesis enclose an argument list, commas
separate the arguments. A colon precedes the result type. We do not list operations for
objects, because they do not vary among objects of same class.
Links and associations: Links and associations are the means for establishing relationships
among objects and classes. Link is a physical or conceptual connection among objects.
E.g. JoeSmith WorksFor Simplex Company. We define a link as a tuple – that is, a list of
objects. Link is an instance of an association. Association is a description of a group of links
with common structure and common semantics. E.g. a person WorksFor a company.
Association describes a set of potential links in the same way that a class describes a set of
potential objects.
The below figure shows many-to-many association (model for a financial application).

In UML ,Link is a line between objects; a line may consist of several line segments. If the link
has the name, it is underlined. Association connects related classes and is also denoted by a
line. Show link and association names in italics. Association name is optional, if the model is
unambiguous. Ambiguity arises when a model has multiple associations among same
classes. Developers often implement associations in programming languages as
references from one object to another. A reference is an attribute in one object that
refers to another object.

Qualified Association is an association in which an attribute called the qualifier
disambiguates the objects for a “many” association ends. It is possible to define qualifiers

for one-to-many and many-to-many associations. A qualifier selects among the target
objects, reducing the effective multiplicity from “many” to “one”.
Ex 1: qualifier for associations with one to many multiplicity. A bank services multiple
accounts. An account belongs to single bank. Within the context of a bank, the Account
Number specifies a unique account. Bank and account are classes, and Account Number is a
qualifier. Qualification reduces effective multiplicity of this association from one-to-many to
one-to-one. Qualification increases the precision of a model.

3a. What is an event? With example describe the different types of events
 in state modelling. 8M
An event is an occurrence at a point in time, such as user depresses left button of mouse.
An event happens instantaneously with regard to the time scale of an application. Events
cause state changes which is shown in State Diagrams
Signal Event :A signal event represents a named object that is dispatched (thrown)
asynchronously by one object and then received (caught) by another. Exceptions are an
example of internal signal. Signal event is an asynchronous event. Signal events may have
instances, generalization relationships, attributes and operations. Attributes of a signal
serve as its parameters. A signal event may be sent as the action of a state transition in a
state machine or the sending of a message in an interaction
Signals are modeled as stereotyped classes and the relationship between an operation and
the events by using a dependency relationship, stereotyped as send.

Call Event: A call event represents the dispatch of an operation . Call event is a synchronous
event.

https://praveenthomasln.files.wordpress.com/2012/04/figure-2-signals.png
https://praveenthomasln.files.wordpress.com/2012/04/figure-3-call-events.png

Time and Change Events: A time event is an event that represents the passage of time. It is

modeled by using the keyword ‘after’ followed by some expression that evaluates to a

period of time which can be simple or complex.

A change event is an event that represents a change in state or the satisfaction of some

condition. It is modeled by using the keyword ‘when’ followed by some Boolean expression.

3b. Describe sequence diagram with active objects, passive objects and
 transient objects. 8M

4a. What are the guide lines to be followed while drawing use case diagram?
 Draw the use case model for vending machine. 8M

relationships.

4b. Discuss the use of branching and concurrency in activity diagram. 8M

Branching

Concurrent Activities

5a. Explain the procedure to be followed to construct a domain class model.
10M
Find classes

Prepare a data dictionary

Find associations

Find attributes of objects and links

Organize and simplify classes using inheritance

Verify that access paths exists for likely queries

Iterate and refine the model

Reconsider the level of abstraction

Group classes into packages.

Finding Classes:- Classes often correspond to nouns for example . In the statement “a

reservation system to sell tickets to performances at various theaters tentative classes would

be Reservation , System , Ticket ,Performances and Theater

Keeping the right classes:

We need to discard the unnecessary and incorrect classes:

Redundant classes: if two classes express same

Irrelevant classes: It has little or nothing to do with the problem

Vague class: too broad in scope

Attributes: describe individual objects

Operations

Roles

Implementation constructs: CPU, subroutine, process and algorithm

Derived classes: omit class that can be derived from other class

Prepare data dictionary: Information regarding the data is maintained

Finding Associations

Keeping the right associations:

1.Associations between eliminated classes

2.Irrelevant or implementation associations

3.Actions

4.Ternary association

5.Derived Association

6.Misnamed associations

7.Association end names

8.Qualified associations

9.Multiplicity

10.Missing Associations

11.Aggregation

Finding attributes:

Keeping the right attributes:

Refining with inheritance :

1. Bottom-up generalization

2. Top-down generalization

3. Generalization vs enumeration

4. Multiple inheritance

5. Similar associations.

6. Adjusting the inheritance level

Testing Access paths

Iterating a Class Model : Several signs of missing classes

Shifting the level of abstraction

Grouping Classes into packages.

5b. Write and explain the steps performed in constructing a domain state
model. 6M

6a. Describe the steps for constructing application interaction model. 10M

10. Checking against the domain class model.

6B. Explain the steps for constructing application state model. 6M
The application state model focuses on application classes

• Augments the domain state model
 Application State Model- steps
1. Determine Application Classes with States
2. Find events
3. Build state diagrams
4. Check against other state diagrams
5. Check against the class model
6. Check against the interaction model

1. Determine Application Classes with States

• Good candidates for state models

– User interface classes

– Controller classes

• ATM example

– The controllers have states that will elaborate.
2. Find events

• Study scenarios and extract events.

• In domain model

– Find states and then find events

• In application model

– Find events first, and then find states

• ATM example

– Revisit the scenarios, some events are:

– Insert card, enter password, end session and take card.
3. Building State Diagrams

• To build a state diagram for each application class with temporal behaviour.

Initial state diagram

– Choose one of these classes and consider a sequence diagram.

– The initial state diagram will be a sequence of events and states.

– Every scenario or sequence diagram corresponds to a path through the state
diagram.

• Find loops

– If a sequence of events can be repeated indefinitely, then they form a loop.

• Merge other sequence diagrams into the state diagram.

• After normal events have been considered, add variation and exception cases.

• The state diagram of a class is finished when the diagram covers all scenarios and the
diagram handles all events that can affect a state.

• Identify the classes with multiple states

• Study the interaction scenarios to find events for these classes

• Reconcile the various scenarios

• Detect overlap and closure of loops
4. check against other state diagrams

• Every event should have a sender and a receiver.

• Follow the effects of an input event from object to object through the system to make
 sure that they match the scenarios.

• Objects are inherently concurrent.

• Make sure that corresponding events on different state diagrams are consistent.

• ATM example

• The SessionController initiates the TransactionController,

• The termination of the TransactionController causes the SessionController to resume.
5. Check against the class model

• ATM example

– Multiple ATMs can potentially concurrently access an account.

– Account access needs to be controlled to ensure that only one update at a time is applied.
6. Check against the interaction model
• Check the state model against the scenarios of the interaction model.
• Simulate each behaviour sequence by hand and verify the state diagrams.
• Take the state model and trace out legitimate paths.

7a. With the help of architecture of ATM system describe how to break a system into
subsystems in system design. 12M

Divide the system into pieces . Each piece of a system is called subsystem. A subsystem is a
group of classes, associations, operations, events, and constrains. A subsystem is usually
identified by the services it provides. Each subsystem has a well-defined interface to the rest of
the system.

 The relation between two subsystems can be – Client-server relationship – Peer-to-peer
 relationship

The decomposition of systems into subsystems is organized as a sequence of
– Horizontal layers,
– Vertical partitions, or
– Combination of layers and partitions.

1. LAYERS : Each built in terms of the ones below it. The objects in each layer can be

independent.

E.g. A client-server relationship. Problem statement specifies only the top and bottom layers:

– The top is the desired system.

– The bottom is the available resources.

The intermediate layers is than introduced. • Two forms of layered architectures:

– Closed architecture • Each layer is built only in terms of the immediate lower layer.

 – Open architecture • A layer can use features on any lower layer to any depth

 .• Do not observe the principle of information hiding.

2. PARTITIONS

Vertically divided into several subsystems .Independent or weakly coupled Each providing

one kind of service. E.g. A computer operating system includes

– File system

– Process control

– Virtual memory management

3. COMBINATION OF LAYERS AND PARTITIONS

7b. Discuss about making a reuse plan in system design 4M
 Two aspects of reuse:
 – Using existing things
 – Creating reusable new things
 Reusable things include: Models, Libraries, Frameworks ,Patterns
1. Libraries A library is a collection of classes that are useful in many contexts.
 Qualities of “Good” class libraries:
 – Coherence – well focused themes
 – Completeness – provide complete behaviour
 – Consistency - polymorphic operations should have consistent names and signatures across
classes.
 – Efficiency – provide alternative implementations of algorithms.
 – Extensibility – define subclasses for library classes
 – Genericity – parameterized class definitions
 Problems limit the reuse ability:
 – Argument validation • Validate arguments by collection or by individual
 – Error Handling • Error codes or errors
 – Control paradigms • Event-driven or procedure-driven control
 – Group operations
 – Garbage collection
 – Name collisions
2. Frameworks A framework is a skeletal structure of a program that must be elaborated to build a
 complete application. Frameworks class libraries are typically application specific and not suitable
for general use.
3. Patterns A pattern is a proven solution to a general problem. There are patterns for analysis,
architecture, design, and implementation.
Benefits of Pattern
 1. A pattern is considered by others and has already been applied to past problems .
 2. When you use patterns, you tap into a language that is familiar to many developers
 3. Patterns are prototypical model fragments that distil some of the knowledge of experts.
Pattern vs. Framework
 1.A pattern is typically a small number of classes and relationships.
 2 A framework is much broader in scope and covers an entire subsystem or application.

8a. Briefly explain the design optimization with reference to class design. 8M

implementation.

8b. Explain the steps to be performed in designing algorithm for class design. 8M
Formulate an algorithm for each operation. The analysis specification tells what the operation does for

its Clients. The algorithm show how it is done

1. Choosing algorithms (Choose algorithms that minimize the cost of implementing operations)

When efficiency is not an issue, you should use simple algorithms. Typically, 20% of the operations

consume 80% of execution time. Considerations for choosing alternative algorithms

a. Computational complexity

b. Ease of implementation and understand ability

c. Flexibility

Simple but inefficient. Complex efficient

2. Choosing Data Structures (select data structures appropriate to the algorithm)

a. Algorithms require data structures on which to work.

b. They organize information in a form convenient for algorithms.

c. Many of these data structures are instances of container classes.

d. Such as arrays, lists, queues, stacks, set…etc.

3. Defining New Internal Classes and Operations

a. To invent new, low-level operations during the decomposition of high-level operations.

b. The expansion of algorithms may lead you to create new classes of objects to hold intermediate

results.

ATM Example:

i. Process transaction uses case involves a customer receipt.

ii. A Receipt class is added.

4. Assigning Operations to Classes (assign operations to appropriate classes)

a. How do you decide what class owns an operation?

i. Receiver of action: To associate the operation with the target of operation, rather than the initiator.

ii Query vs. update : The object that is changed is the target of the operation

iii Focal class : Class centrally located in a star is the operation’s target

iv. Analogy to real world

9a. Define pattern. Explain the pattern description template. 8M

Abstracting from specific problem-solution pairs and distilling out common factors leads to patterns.
Each pattern is a three part rule:
• a relation between a certain context
• a problem
• and a solution

Pattern Categories
Some patterns help in structuring a software system into subsystems. Other patterns support the
refinement of subsystems and components, or of the relationships between them. Further patterns
help in implementing particular design aspects in a specific programming language.
 Patterns also range from domain-independent ones, such as those for decoupling interacting
components, to patterns addressing domain-specific.
We group patterns into three categories:
Architectural patterns
Design patterns
Idioms

Name The name and a short summary of the pattern.
Also Known As Other names for the pattern, if any are known.
Example A real-world example demonstrating the existence of the problem and the need for the pattern.
Context The situations in which the pattern may apply
Problem The problem the pattern addresses, including a discussion of its associated forces.
Solution The fundamental solution principle underlying the pattern.
Structure A detailed specification of the structural aspects of the pattern.
Dynamics Typica1 scenarios describing the run-time behavior of the pattern.

Implementation : Guidelines for implementing the pattern. These are only a suggestion, not an
immutable rule. You should adapt the implementation to meet your needs, by adding different,
extra, or more detailed steps, or by re-ordering the steps.
Example Resolved : Discussion of any important aspects for resolving the example that are not yet
covered in the Solution, Structure, Dynamics and implementation sections.
Variants : A brief description of variants or specializations of a pattern.
Known Uses : Examples of the use of the pattern, taken from existing systems.
Consequences : The benefits the pattern provides, and any potential liabilities.
See Also : References to patterns that solve similar problems, and to patterns
that help us refine the pattern we are describing.

9b. Briefly explain Forwarder-Receiver pattern. 8M

Forwarder-Receiver design pattern Provides transparent inter process
communication for software systems with peer-to-peer interaction model. It
introduces forwarders and receivers to decouple peers from the underlying
communication mechanisms.
Example: The company Dwarf Ware offers applications for the management of
the computer networks. System consists of agent processes written in Java that
run on each available network node.
Context – peer-to-peer communication
Problem forces –
1.The system should allow the exchangeability of the communication

mechanisms.
2.The co-operation of components follows a peer-to-peer model, in which a

sender only needs to know names of its receivers.
3.The communication between peers should not have a major impact on

performance.

Solution – peers may act as clients or servers. Therefore the details of the

underlying IPC mechanisms for sending or receiving messages are hidden from

peers by encapsulating all system-specific functionality into separate

components. system specific functionalities are the mapping of names to physical

locations, the establishment of communication channels and marshalling and un

marshalling messages.

Structure

The static relationships in the Forwarder-Receiver design pattern are shown in the diagram
below.
To send a message to a remote peer, the peer invokes the method sendMsg of its
forwarder, passing the message as an argument. The method sendMsg must convert
messages to a format that the underlying IPC mechanism understands. For this purpose, it
calls marshal. sendMsg uses deliver to transmit the IPC message data to a remote receiver.
When the peer wants to receive a message from a remote peer, it invokes the receiveMsg
method of its receiver, and the message is returned. receiveMsg invokes receive, which
uses the functionality
of the underlying IPC mechanism to receive IPC messages. After message reception
receiveMsg calls unmarshal to convert IPC messages to a format that the peer understands.

Dynamics

The following scenario illustrates a typical example of the use of a Forwarder-Receiver
structure.
Two peers pl and p2 communicate with each other. For this purpose, PI uses a forwarder
forw1 and a
receiver Recv2 handles all message transfers with a forwarder Forw2 and a receiver Recv2
:PI requests a service from a remote peer2.Fo r this purpose, it sends the request to its
forwarder forw1 and specifies the name of the recipient.
Forw1 determines the physical location of the remote peer and marshals the
message.Forw1 delivers the message to the remote receiver Recv2.At some earlier time P2
has requested its receiver Recv2 to wait for an incoming request. Now, Recv2 receives the
message arriving from Forw1.
Recv2 unmarshals the message and forwards it to its peer2 .Meanwhile. pl calls Its receiver
Recvl to wait for a response.
P2 performs the requested service, and sends the result and the name of the recipient pl to
the forwarder forw2.T he forwarder marshals the result and delivers it Recv l . Recvl receives
the response from P2, unmarshals it and delivers it to P1.

10a. Explain the structure of Client-Dispatcher server pattern. 8M

Intent :

The Client-Dispatcher-Server design pattern introduces an intermediate layer between clients and

servers, the dispatcher component. It provides location transparency by means of a name service,

and hides the details of the establishment of the communication connection between clients and

servers.

Context A software system integrating a set of distributed servers, with the servers running locally or

distributed over a network.

Problem When a software system uses servers distributed over a network it must provide a means

for communication between them. In many cases a connection between components may have to

be established before the communication can take place, depending on the available

communication facilities. However, the core functionality of the components should be separate

from the details of communication mechanisms. Clients should not need to know where servers are

located.

We have to balance the following forces:

 A component should be able to use a service independent of the location of the service

provider.

 The code implementing the functional core of a service consumer should be separate from the

code used to establish a connection with service providers.

Solution : Provide a dispatcher component to act as an intermediate layer between clients and

servers. The dispatcher implements a name service that allows clients to refer to servers by names

instead of physical locations, thus providing location transparency. In addition, the dispatcher is

responsible for establishing the communication channel between a client and a server.

Add servers to the application that provides services to other components. Each server is uniquely

identified by its name, and is connected to clients by the dispatcher.

Clients rely on the dispatcher to locate a particular server and to establish a communication link with

the server. In contrast to traditional Client-Server computing, the roles of clients and servers can

change dynamically.

Structure:

10b. Describe Whole-Part design pattern. 8M

The Whole-Part design pattern helps with the aggregation of components that together

form a semantic unit. An aggregate component, the whole, encapsulates its constituent

components, the Parts, organizes their collaboration, and provides a common interface to

its functionality. Direct access to the Parts Is not possible.

Context : Implementing aggregate objects.
Problem:

• A complex object should either be decomposed into smaller objects, or composed of
existing objects, to support reusability, changeability and the recombination of the
constituent objects in other types of aggregate.

• Clients should see the aggregate object as an atomic object that does not allow any
direct access to its constituent parts.

Solution:

• Use a component that encapsulates smaller objects, and prevents clients from
accessing these constituent parts directly.

• Use an interface as the only means of access to the functionality of the encapsulated
objects.

• An assembly-parts relationship differentiates between a product and its parts or
subassemblies

• A container-contents relationship.
• A collection-members relationship helps to group similar objects - such as an

organization and its members
Structure:

The static relationships between a Whole and its Parts are illustrated in the OMT diagram

below:

Implementation:

1.Design the public interface of the Whole.
2.Separate the Whole into Parts, or synthesize it from existing ones. There are two
approaches to assembling the Parts you need—either assemble a Whole 'bottom-up' from
existing Parts, or decompose it 'top-down' into smaller Parts:

 The bottom-up approach allows you to compose Wholes from loosely-coupled
Parts that you can later reuse when implementing other types of Whole.

 The top-down approach makes it is possible to cover all of the Whole 's
functionality. Partitioning into Parts is driven by the services the Whole provides
to its clients, freeing you from the requirement to implement glue code.

3. If you follow a bottom-up approach, use existing Parts from component libraries or class
libraries and specify their collaboration.
4. If you follow a top-down approach, partition the Whole 's services into smaller
collaborating services and map these collaborating services to separate Parts.
5.Specify the services of the Whole in terms of services of the Parts. In the structure you
found in the previous two steps, the Whole is represented as a set of collaborating Parts
with separate responsibilities.
6. Implement the Parts.
7. Implement the Whole.

