Fifth Semester MCA Degree Examination , Dec 2018/Jan-2019
Object Oriented Modelling and Design Pattern

16MCA51 Max Marks : 80

1a. Outline the various Object Oriented Themes. 6M

1 Abstraction

Abstraction focus on essential aspects of an application while ignoring details. This means
focusing on what an object is and does, before deciding how to implement it. Use of
abstraction preserves the freedom to make decisions as long as possible by avoiding
premature commitments to details. Most modem languages provide data abstraction, but
inheritance and polymorphism add power. The ability to abstract is probably the most
important skill required for 00 development.

2 Encapsulation

Encapsulation (also information hiding) separates the external aspects of an object, that are
accessible to other objects, from the internal implementation details, that are hidden from
other objects. Encapsulation prevents portions of a program from becoming so
interdependent that a small change has massive ripple effects. You can change an object's
implementation without affecting the applications that use it. You may want to change the
implementation of an object to improve performance, fix a bug, consolidate code, or
support porting. Encapsulation is not unique to 00 languages, but the ability to combine
data structure and behaviour in a single entity makes encapsulation cleaner and more
powerful things prior languages, such as Fortran, Cobol, and C.

3. Combining Data and Behaviour

The caller of an operation need not consider how many implementations exist. Operator
polymorphism shifts the burden of deciding what implementation to use from ilk calling
code to the class hierarchy. For example, non-O0 code to display the contents of a window
must distinguish the type of each figure, such as polygon, circle, or text, and call the
appropriate procedure to display it. An 00 program would simply invoke the draw operation
on each figure; each object implicitly decides which procedure to use, based on its class.
Maintenance is easier, because the calling code need not be modified when a new class is
added.

4. Sharing

00 techniques promote sharing at different levels. Inheritance of both data structure and
behaviour lets subclasses share common code. This sharing via inheritance is one of the
main advantages of 00 languages. More important than the savings in code is the
conceptual clarity from recognizing that different operations are ail really the same thing.
This reduces the number of distinct cases that you must understand and analyze.00
development not only lets you share information within an application, but also offers the
prospect of reusing designs and code on future projects. 00 development provides the tools,
such as abstraction, encapsulation, and inheritance, to build libraries of reusable
components. Unfortunately, reuse has been overemphasized as a justification for 00
technology.

5 Emphasis the Essence of an Object

00 technology stresses what an object is, rather than how it is used. The uses of an object
depend on the details of the application and often change during development. As



requirements evolve, the features supplied by an object are much more stable than the
ways it is used, hence software systems built on object structure are more stable in the long
run. 00 development places a greater emphasis on data structure and a lesser emphasis on
procedure structure than functional-decomposition methodologies.

6 Synergy

Identity, classification, polymorphism, and inheritance characterize 00 languages. Each of
concepts can be used in isolation, but together they complement each other. The benefits
of an OQ-approach are greater than they might seem at first. The emphasis on the essential
properties of an object forces the developer to think more carefully deeply about what an
object IS and does. The resulting system tends to be cleaner, more general, and more robust
than it would be if the emphasis were only on the use of data and operations.

1b. Describe the following terms: 10M
i) Enumeration ii) Aggregation iii) Composition iv)Abstract class
v) Reification Give example for each.

Enumeration: An enumeration is a complete, ordered listing of all the items in a collection.
The term is commonly used in mathematics and computer science to refer to a listing of all
of the elements of a set. The precise requirements for an enumeration (for example,
whether the set must be finite, or whether the list is allowed to contain repetitions) depend
on the discipline of study and the context of a given problem.

Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ... for the
set of positive integers), but in other cases it may be necessary to impose a (perhaps
arbitrary) ordering. In some contexts, such as enumerative combinatory , the term
enumeration is used more in the sense of counting — with emphasis on determination of the
number of elements that a set contains, rather than the production of an explicit listing of
those elements.

Aggregation is a stronger form of association. An association is a link connecting two
classes. In UML, a link is placed between the “whole” and the “parts” classes with a
diamond head attached to the “whole” class to indicate that this association is an
aggregation . In aggregation, the part may have an independent lifecycle, it can exist
independently. When the whole is destroyed the part may continue to exist.

Example :A car has many parts. A part can be removed from one car and installed into a

different car. If we consider a salvage business, before a car is destroyed, they remove all
saleable parts. Those parts will continue to exist after the car is destroyed.
Composition is really a strong form of aggregation. Composition has only one owner.
Composition cannot exist independent of their owner. Composition lives or dies with their
owner. ltis represented using a filled diamond head. Composition is a stronger form of
aggregation. The lifecycle of the part is strongly dependent on the lifecycle of the whole.
When the whole is destroyed, the part is destroyed too.

Example : For example, a building has rooms. A room can exist only as part of a building. The

room cannot be removed from one building and attached to a different one. When the
building ceases to exist so do all rooms that are part of it.



{composition}

Department
College
1 =

{aggregation)

Student

Abstract class is a class that has no direct instances but whose descendant classes

have direct instances. In UML notation an abstract class name is listed in an italic (or place
the keyword {abstract} below or after the name). We can use abstract classes to define the
methods that can be inherited by subclasses. Alternatively, an abstract class can define the
signature for an operation with out supplying a corresponding method. We call this an
abstract operation. Abstract operation defines the signature of an operation for which each
concrete subclass must provide its own implementation.

Reification is the promotion of something that is not an object into an object and can be
helpful for meta applications. It is useful to promote attributes, methods, constraints, and
control information into objects so that we can describe and manipulate them as data.

Substance
substanceMName
Reification:
Pmm‘eﬂmibﬂtﬂ' —---u——-—-*—--------
to a class )
Substance | EI:“: SubstanceName

) substanceMName

2a. State the purpose of building a model. 4M

1. Testing a physical entity before building it: Medieval built scale models of
Gothic Cathedrals to test the forces on the structures. Engineers test scale models of
airplanes, cars and boats to improve their dynamics. Advancement in computation permit
the simulation of many physical structures without the need to build physical models. These
models are cheaper than building a complete system and enable early correction of flaws.
2. Communication with customers: Architects and product designers build
models to show their customers. (note: mock-ups are demonstration products that
imitate some or all of the external behaviour of a system).
3. Visualization: Storyboards of movies, TV shows and advertisements let
writers see how their ideas flow.
4. Reduction of complexity: Models reduce complexity to understand directly
by separating out a small number of important things to do with at a time.

2b. Briefly explain the class model, state model and interaction model. 4M
Class Model: represents the static, structural, “data” aspects of a system. It describes the
structure of objects in a system- their identity, their relationships to other objects, their
attributes, and their operations. Goal in constructing class model is to capture those



concepts from the real world that are important to an application. Class diagrams express
the class model.

State Model: represents the temporal, behavioural, “control” aspects of a system. State
model describes those aspects of objects concerned with time and the sequencing of
operations — events that mark changes, states that define the context for events, and the
organization of events and states. State diagram express the state model. Each state
diagram shows the state and event sequences permitted in a system for one class of
objects. Actions and events in a state diagram become operations on objects in the class
model. References between state diagrams become interactions in the interaction model.
Interaction model — represents the collaboration of individual objects, the “interaction”
aspects of a system. Interaction model describes interactions between objects — how
individual objects collaborate to achieve the behaviour of the system as a whole. The state
and interaction models describe different aspects of behaviour, and you need both to
describe behaviour fully. Use cases, sequence diagrams and activity diagrams document the
interaction model.

III

2c. Explain with examples : 8M
i) Value and attribute ii) Operation and Method
iii)  Link and Association iv) Qualified Association

Value and attribute: Value is a piece of data. Attribute is a named property of a class that
describes a value held by each object of the class. Following analogy holds: Object is to class
as value is to attribute.

Example: Attributes of Person object .Name, birthdate, weight.

Values: JoeSmith, 21 October 1983, 64. (Of person object).

Person'al | JoeSmith:Person ][ MarySharp:Person

' name="Mary Sharp"
birthdate=186 March 1950 |

name="Joe Smith"

name: string ‘
birthdate=21 Ociober 1983

birthdate: date

—

- R

Class with Attribuies (2Bjecis with Values

In UML List attributes in the 2nd compartment of the class box. Optional details (like
default value) may follow each attribute. A colon precedes the type, an equal sign precedes
default value. Show attribute name in regular face, left align the name in the box and use
small case for the first letter. we may also include attribute values in the 2nd compartment
of object boxes with same conventions.

Operation and Method : An operation is a function or procedure that maybe applied to or
by objects in a class. E.g. Hire, fire and pay dividend are operations on Class Company. Open,
close, hide and redisplay are operations on class window. All objects in a class share the
same operations. A method is the implementation of an operation for a class.

E.g. In class file, print is an operation you could implement different methods to print files.
Same operation may apply to many different classes. Such an operation is polymorphic.



S

File GeometricO bject

fileName color
sizelnBytes position

lastllpdate | ]

PFerson

name

birthdate _{

. changeJob | move (delta :VectBor)
changeAddress | | print select {p : Point): Boolean

| : e | rotate {in angle : float = 0.0} ]

l

In UML List operations in 3rd compartment of class box. List operation name in regular face,
left align and use lower case for first letter. Optional details like argument list and return
type may follow each operation name. Parenthesis enclose an argument list, commas
separate the arguments. A colon precedes the result type. We do not list operations for
objects, because they do not vary among objects of same class.

Links and associations: Links and associations are the means for establishing relationships
among objects and classes. Link is a physical or conceptual connection among objects.

E.g. JoeSmith WorksFor Simplex Company. We define a link as a tuple —that is, a list of
objects. Link is an instance of an association. Association is a description of a group of links
with common structure and common semantics. E.g. a person WorksFor a company.
Association describes a set of potential links in the same way that a class describes a set of
potential objects.

The below figure shows many-to-many association (model for a financial application).

I Person OwnsStock Company
Clasy diagram <. R O — L e 5 —
| name name
Jgh;izlé’er;an
r'lar‘:e:i"Joh'z“ =L
Marv:FPerson 1 GE:Company I
name="ldany” ——— nams="GE*
; [ SusBsmsen | —  'EwEcompany |
Eject dingromt < T e S !
" _namef Sue ——  natc—IBM" !

Alicz: Parson
name-"Alice”

T Je=fé-Parson

name="Jsi{"

In UML ,Link is a line between objects; a line may consist of several line segments. If the link
has the name, it is underlined. Association connects related classes and is also denoted by a
line. Show link and association names in italics. Association name is optional, if the model is
unambiguous. Ambiguity arises when a model has multiple associations among same
classes. Developers often implement associations in programming languages as

references from one object to another. A reference is an attribute in one object that

refers to another object.

Qualified Association is an association in which an attribute called the qualifier
disambiguates the objects for a “many” association ends. It is possible to define qualifiers



for one-to-many and many-to-many associations. A qualifier selects among the target
objects, reducing the effective multiplicity from “many” to “one”.

Ex 1: qualifier for associations with one to many multiplicity. A bank services multiple
accounts. An account belongs to single bank. Within the context of a bank, the Account
Number specifies a unique account. Bank and account are classes, and Account Number is a
qualifier. Qualification reduces effective multiplicity of this association from one-to-many to
one-to-one. Qualification increases the precision of a model.

g [ Account
N L P
_— 2 a — | accoun :
'I—Bank }accoth'Jm_beL ape ) Accounj l_ ) o
S Noi gualified
Oualified
3a. What is an event? With example describe the different types of events
in state modelling. 8M

An event is an occurrence at a point in time, such as user depresses left button of mouse.
An event happens instantaneously with regard to the time scale of an application. Events
cause state changes which is shown in State Diagrams

Signal Event :A signal event represents a named object that is dispatched (thrown)
asynchronously by one object and then received (caught) by another. Exceptions are an
example of internal signal. Signal event is an asynchronous event. Signal events may have
instances, generalization relationships, attributes and operations. Attributes of a signal
serve as its parameters. A signal event may be sent as the action of a state transition in a
state machine or the sending of a message in an interaction

Signals are modeled as stereotyped classes and the relationship between an operation and
the events by using a dependency relationship, stereotyped as send.

. MovementAgent
signal
position
Ko «signal» " velocity
isi «send»
parameters Collision L~ _ & - - -} moveTo()
force : Float send dependency

Call Event: A call event represents the dispatch of an operation . Call event is a synchronous

event.

event
/

I
w » startAutopilot(normal) \(
Manual j <. /K Automatic

parameter



https://praveenthomasln.files.wordpress.com/2012/04/figure-2-signals.png
https://praveenthomasln.files.wordpress.com/2012/04/figure-3-call-events.png

Time and Change Events: A time event_is an event that represents the passage of time. It is
modeled by using the keyword ‘after’ followed by some expression that evaluates to a
period of time which can be simple or complex.

| when (room temperature < heating set point )
= when (room temperature > cooling set point )
= ywhen (battery power < lower limit )

= when (tire pressure < minimum pressure )

A change event is an event that represents a change in state or the satisfaction of some
condition. It is modeled by using the keyword ‘when’ followed by some Boolean expression.

= when (date = jam 1, 2000 )
| after (10 seconds )

3b. Describe sequence diagram with active objects, passive objects and

transient objects. 8M

With procedural code all objects are not constantly active. Most objects are passive and do
not have their own threads of control. A passive object is not activated until it has been called.
Once the execution of an operation completes and control returns to the caller, the passive
object becomes inactive.

:Tran-ac'llunj [ :CustomerTable |

SOy =]
oaﬂ'll?n"l“ssiun ()

—_— = — L 1

Figure B.5 Seguence diagram with passive objects. Sequence diagrams

can show the implementation of operations.

The UML shows the period of time for an object’s execution as a thin rectangle. This is
called the activation or focus af control. An activation shows the time period during which
a call of a method is being processed, including the time when the called method has invoked
another operation. The period of time when an object exists but is not active is shown as a
dashed line. The entire period during which the object exists is called the lifeline, as it shows
the lifetime of the object.

===y

operationE {(c, d) 1

create (arg)

{execute order}

e — — — — — — ]
I

Figure B.6 Seguence diagram with a transient object. Many applications hawve
a mix of active and passive objects. They create and destroy objects.



Figure 8.6 shows further notation. (MhjectA is an active object that initiates an operation. Be-
cause it is active, its activation rectangle spans the entire time shown in the diagram. ObjectB
is a passive object that exists during the entire time shown in the diagram, but it is not active
for the whole time. The UML shows its existence by the dashed line (the lifeline) that covers
the entire time period. ObjectB 's lifeline broadens into an activation rectangle when it is pro-
cessing a call. During part of the time, it performs a recursive operation, as shown by the dou-
bled activation rectangle between the call by ebjecrC on aperationE and the return of the
result value. ObjectC is created and destroved during the time shown on the diagram, so its
lifeline does not span the whole diagram.

The notation for a call is an arrow from the calling activation to the activation created
by the call. The tail of the arrow is somewhere along the rectangle of the calling activation.
The arrowhead aligns with the top of the rectangle of the newly created activation, because

the call creates the activation. The filled arrowhead indicates a call (as opposed to the stick

4a. What are the guide lines to be followed while drawing use case diagram?
Draw the use case model for vending machine. 8M

First determine the system boundary. It is impossible to identify use cases or actors

if the system boundary is unclear.

Ensure that actors are focused. Each actor should have a single, coherent purpose. If
a real-world object embodies multiple purposes, capture them with separate actors. For
example, the owner of a personal computer may install software, set up a database, and
send email. These functions differ greatly in their impact on the computer system and
the potential for system damage. They might be broken into three actors: system admin-
istrator, database administrator, and computer user. Remember that an actor is defined
with respect to a system, not as a free-standing concept.

Each use case must provide value to users. A use case should represent a complete
transaction that provides value to users and should not be defined too narrowly. For ex-
ample, dial a telephone number is not a good use case for a telephone system. It does not
represent a complete transaction of value by itself; it is merely part of the use case make
telephone call. The latter use case involves placing the call, talking, and terminating the
call. By dealing with complete use cases, we focus on the purpose of the functionality
provided by the system, rather than jumping into implementation decisions. The details
come later. Often there is more than one way to implement desired functionality.

Relate use cases and actors. Every use case should have at least one actor, and every
actor should participate in at least one use case. A use case may involve several actors,
and an actor may participate in several use cases.

Remember that use cases are informal. It is important not to be obsessed by formal-
ism in specifying use cases. They are not intended as a formal mechanism but as a way
to identify and organize system functionality from a user-centered point of view. It is
acceptable if use cases are a bit loose at first. Detail can come later as use cases are ex-
panded and mapped into implementations.

Use cases can be structured. For many applications, the individual use cases are com-
pletely distinct. For large systems, use cases can be built out of smaller fragments using

relationships.



Vending Machine

CoovifigeD
beverage

Customer
perform
scheduled
maintenance — %
| —

Repair technician
repalrs
Clonc tem=>— X

4b. Discuss the use of branching and concurrency in activity diagram. 8M

D

Stock clerk

[failure]

i

update online send
portfolio failure notice

Branching

If there is more than one successor to an activily, each arrow may be labeled with a condition
in square brackets, for example, [failure]. All subsequent conditions are tested when an ac-
tivity completes. If one condition is satisfied, its arrow indicates the next activity to perform.
If no condition is satisfied, the diagram is badly formed and the system will hang unless it is
interrupted at some higher level. To avoid this danger, you can use the else condition; it is
satisfied in case no other condition is satisfied. If multiple conditions are satisfied, only one
successor activity executes, but there is no guarantee which one it will be. Sometimes this
kind of nondeterminism is desirable, but often it indicates an error, so the modeler should
determine whether any overlap of conditions can occur and whether it is correct.

As a notational convenience, a diamond shows a branch into multiple successors, but it
means the same thing as arrows leaving an activity symbol directly. In Figure 7.9 the dia-
mond has one incoming arrow and two outgoing arrows, each with a condition. A particular
execution chooses only one path of control.

If several arrows enter an activity, the alternate execution paths merge. Alternatively,
several arrows may enter a diamond and one may exit to indicate a merge.



Concurrent Activities
Unlike traditional flow charts, organizations and computer systems can perform more than
one activity at a time. The pace of activity can also change over time. For example, one ac-
tivity may be followed by another activity (sequential control), then split into several con-
current activities (a fork of control), and finally be combined into a single activity (a merge
of control). A fork or merge is shown by a synchronization bar-—a heavy line with one or
more input arrows and one or more output arrows. On a synchronization, control must be
present on all of the incoming activities, and control passes to all of the outgoing activities.
Figure 7.9 illustrates both a fork and merge of control, Once an order is executed, there
is a fork—several tasks need to occur and they can occur in any order. The stock trade system
must send confirmation to the customer, debit the customer's account, and update the cus-
tomer’s online portfolio. After the three concurrent tasks complete and the trade is settled,
there is a merge, and execution proceeds to the activity of closing the order.

5a. Explain the procedure to be followed to construct a domain class model.

10M

Find classes

Prepare a data dictionary

Find associations

Find attributes of objects and links

Organize and simplify classes using inheritance
Verify that access paths exists for likely queries
Iterate and refine the model

Reconsider the level of abstraction

Group classes into packages.

Finding Classes:- Classes often correspond to nouns for example . In the statement “a
reservation system to sell tickets to performances at various theaters tentative classes would
be Reservation , System , Ticket ,Performances and Theater

Keeping the right classes:

We need to discard the unnecessary and incorrect classes:

Redundant classes: if two classes express same

Irrelevant classes: It has little or nothing to do with the problem

Vague class: too broad in scope

Attributes: describe individual objects

Operations

Roles

Implementation constructs: CPU, subroutine, process and algorithm

Derived classes: omit class that can be derived from other class

Prepare data dictionary: Information regarding the data is maintained
Finding Associations

Keeping the right associations:

1.Associations between eliminated classes

2.Irrelevant or implementation associations

3.Actions

4.Ternary association

5.Derived Association

6.Misnamed associations

7.Association end names



8.Qualified associations
9.Multiplicity
10.Missing Associations
11.Aggregation

Finding attributes:

Keeping the right attributes:
Refining with inheritance :
Bottom-up generalization
Top-down generalization
Generalization vs enumeration
Multiple inheritance

Similar associations.
Adjusting the inheritance level

oakrwdE

Testing Access paths
Iterating a Class Model : Several signs of missing classes

Shifting e level of abstraction
Grouping Classes into packages.

5b. Write and explain the steps performed in constructing a domain state
model. 6M

12.3 Domain State Model

Some domain objects pass through qualitatively distinct states during their lifetime. There
may be different constraints on attribute values, different associations or multiplicities in the
various states, different operations that may be invoked, different behavior of the operations,
and so on. It is often useful to construct a state diagram of such a domain class. The state
diagram describes the various states the object can assume, the properties and constraints of
the object in various states, and the events that take an object from one state to another.

Most domain classes do not require state diagrams and can be adequately described by
a list of operations. For the minority of classes that do exhibit distinct states, however, a state
model can help in understanding their behavior.



First identify the domain classes with significant states and note the siates of each class_
Then determine the = that take an object from one state 1o another. Given the states amnd
the events, you can build state diagrams for the affected objects. Finally, evaluate the state
diagrams o make sure they are complete and cormect.

MFMngWMMmmawﬂmmo&l-

- I ify o <l wwiith [R2.3_1)

- Find states. [12.3.2]

- Find cvents. [ 12.3.3]
-
‘-

Build state diagrams. [12.3.4]
Evaluate state diagrams. [E2.3.5]

[Raalatul il 14 apprOpTians
for an ATM depends on the state of an Accosaar. mmqrumﬁuﬂmsammufprn-
Zressive and cycling o and from problem states. No other ATM classes have a significant
domain state meodel.

I2. 3.2 Finding States

List the states for each class. Characterize the obj im ho<l thee attribute values thag
an object may have. the associations m:tmﬂypa:tiﬁpminnndlhdrmn]ﬁp]iciﬁﬁ_u—
tributes and associations that are meaningful only in cenain states, and so on. Give each state

EN, imgfal n Aveoid T that indicate how the state came aboun: ry o directly de-
scribe the state.
Don't focus on fine disti HOrs - panticularly guantitative differences, such

as smmall, MMlmmmmbeMmthmumMmmmmm
tributes, or associations.

It is unnecessary o deternmine all the states before examining events., By looking ag
events and considering ransitions amaong states, missing states will become clear.

ATM example. Heres are soime states for an Accouwrnr: Normeae! (rnesdy l:nru.u-nnal a-uc-ess).
Closed (closed by the custormer but still on file in the bank recornds), € 1
wuhdnwwls:medmsbmmﬂmmm}.qMMpvw{mmmmm
blocked for sorme reasond.

@ﬁ'erent states. add a t o1
ﬁed the trgn L




6a. Describe the steps for constructing application interaction model. 10M



13.1 Application Interaction Model

Most domain models are static and operations are unimportant. because a domain as a whole
usually doesn"t do anything. The focus of domain modeling is on building a model of intrin-
sic concepts. After completing the domain mwodel we then shift our attention to the details of
an application and consider interaction.

Begin interaction modeling by determining the overall boundary of the system. Then
identify use cases and flesh them out with scenarios and sequence diagrams. You should also
prepare activity diagrams for use cases that are complex or have subtleties. Omce you fully
understand the use cases, you can organize them with relationships. And finally check
against the domain class model to ensure that there are mo inconsistencies.

You can construct an application interaction model with the following steps.
Determine the systemn boundary. [13.1.1]

Find actors. [13.1.2]

Find use cases. [13.1.3]

Find initial and final events. [13.1.4]

Prepare normal scenarios. [13.1.5]

#Audd variation and exception scenarios. [13.1.6]

Find external events. [13.1.7]

Prepare activity diagrams for complex use cases. [13.1:8]
W Organize actors and use cases. [13.1.9]

- Check agains: the domain class meosdiel. [13.1.00]

13.1.1 Determining the System Bowurndary

You must kvow the procise scope of an application—ihe boundary of the system—an onder
o specify functionality. This means that you must decide what the sy=stem incledes and, more
impeortanily, what it omaes. IF the system boundary is dravwn cormmectly, you can treat the sys-
tem as a black box in its interactions with the catside world—you can regard the system as
a single object, wihose inmtermal details are hadden and changeable. During analysis, you de-
termiine the purposes of the systerm and the views that it presents o ils sctors. Durnng desigm,
you can change the intemal implemeniation of the sysicm as long as you maintain the cxier-
mal behavior,

Usually, you should mot consider humans as part of a system. unless youw ane meosdeling
a human organization, soch as a business or a government departmeent. Humans are actors
dhar mest interact with the syswem, but their actions are ot under the conteal of the sysiem:,
However, you muest allowsr for human ermor in $our Sysiemn.

ATM example. The original problem statement from Chapter 11 sayvs o “design the
software o support a compuiterized banking network incleding both human cashicrs and as-
tomatic teller machines..”” MNMow it is important that cacshier ransactions and AT tramksac-
tions be scambess—Ffromn the customeer™s perspoective cither method of conducting basiness
should yield the same effect on a bank ascoount. However, in commercial practice an ATM
application would be separace from a cashier application—an ATMM application spans banks
while a cashier application s intermal 1o a bank. Both applications would share the samse wrs-
derlying domain mmodel, bat cach would have its own distinct application model. For this
chapter we focus on ATM behavior and ignore cashier details,

I3.1.2 Finding Actorns
Omnoe you dictermine the system boundary, yvou muast idemdify the exicmal objects that inlteract
directly with the system. These are its acrors. Actors. include homans, extermnal devices, and
other soffware systems. The important thing aboul actors is that they are ot unader conored
of the application, and youo muest consider them o be somewhat unpredictable. That is, even
though there may be an expected seguence of behavios by the actors, an application™s design
should be robust so that it does not crash if an sctor fails o behave as expected.

In Ainding actors, we are ol searching for individuals bar for archervpical behavior.

Esch actor reprosemis an idealizsd aser that excrcisces sorme sabscr of the systom functiomal-
ity. Examine cach extermal objoct o see if it has several distinet faces, An actor is a coherent
face presented 1o the system, and an extermal object may have more than oe actor, It is also
possible for different kinds of extermal objects o play thee part of the saomme actor.

ATM example. A particular person may be both a bank tcller and a customer of the
samee bank. This is an interesting but usually unimpomant codncidencoe—a person appooaches
the bank in omne or the other role at a timme. For the ATMM application, the actors arne Crstomer,
Bamk, amd Cormsoriinm.

13.1.3 Finding Use Cases

For cach actor, list the fundamentally different ways in which the actor uses the system. Each
of these ways is a use case. The use cases partition the functionality of a system into a small
number of discrete units, and all system behavior must fall under some use case. You may
have trouble deciding where to place some piece of marginal behavior. Keep in mind that
there are always borderline cases when making partitions: just make a decision cven if it is
somewhat arbitrary.

Each use case should represent a kind of service that the system provides—something
that provides value to the actor. Try to keep all of the use cases at a similar level of detail.



W Process transaction. The ATM system performs an action that affects an account’s bal-
ance, such as deposit. withdraw, and transfer. The ATM ensures that all completed
transactions are ultimately written to the bank’s database.

B Transmit data. The ATM uses the consortium’s facilities to communicate with the ap-
propriate bank computers.

13.1.4 Finding Initial and Final Events

Use cases partition system functionality into discrete pieces and show the actors that are in-
volved with each piece. but they do not show the behavior clearly. To understand bebavior,
you must understand the execution sequences that cover cach use case. You can start by find-
ing the events that initiate cach use case. Determine which actor initiates the use case and
define the event that it sends to the system. In many cases, the initial event is a request for
the service that the use case provides. In other cases, the initial event is an occurrence that
triggers a chain of activity. Give this event a meaningful name, but don't try to determine its
exact parameter list at this point.

You should also determine the final event or events and how much to include in each use
case. For example, the use case of applying for a loan could continue until the application is
submitted, until the loan is granted or rejected, until the moncey from the loan is delivered, or
until the loan is finally paid off and closed. All of these could be reasonable choices. The
modeler must define the scope of the use case by defining when it terminates.

ATM example. Here are initial and final events for cach use case.

W Initiate session, The initial event is the customer’s insertion of a cash card. There are
two final events: the system keeps the cash card or the system retums the cash card.

® Query account. The initial event is a customer’s request for account data. The final
event is the system's delivery of accoumt data to the customcr.

W  Process transaction. The initial event is the customer’s initiation of a transaction.
There are two final events: committing or aborting the transaction.

B Transmit data. The initial event could be triggered by a customer's request for account
data. Another possible initial event could be recovery from a network, power, or another
kind of failure. The final event is successful transmission of data.

13.1.5 Preparing Normal Scenarios

For each use case, prepare one or more typical dialogs 1o get a feel for expected system be-
havior, These scenanios illustrate the major interactions, external display formats, and infor-
mation exchanges. A scenario is a sequence of events among a set of inleracting objects.
Think in terms of sample interactions, rather than trying to write down the general case di-
rectly. This will help you ensure that important steps are not overlooked and that the overall
flow of interaction is smooth and correct.

For most probiems., logical correctness depends on the sequences of interactions and not
their exact times. (Real-time systems. however, do have specific timing requirements on in-
teractions, but we do not address real-time systems in this book.)



Sometimes the problem statement describes the full interaction sequence, but most of
the time you will have to invent {or at least flesh out) the interaction sequence. For example,
the ATM problem statement indicates the meed to obiain transaction data from the user bat is
vague about exactly what parameters are needed and in what order o ask for them. During
analysis, try 10 avosd such details. For many applications, the order of gathering input is not
crucial and can be deferred to design.

Prepare scenarios for “normal”™ cases—interactions without any unusual inputs or emor
conditions, An evenl opcurs whenever information is exchanged between an object in the
system and an outside agent, such as a user, a sensor, or another task. The information values
exchanged are event parameters. For example, the event password enfered has the password
value as a parameter, Events with no parameters are meaningful and even common. The in-
formation in such an event is the fact that it has occurred. For each event, identify the actor
(system, user, or other external agent) that caused the event and the parameters of the event.

ATM example. Figure 13.2 shows a normal scenario for each use case.

13.1.6 Adding Variation and Exception Scenarios
After you have prepared typical scenarios, consider “special™ cases, such as omitted input,
maximum and minimum values, and repeated values. Then consider emor cases, including
invalid values and failures to respond. For many interactive applications, error handling is
the most difficult part of development. If possible, allow the user (o abort an operation or roll
back to a well-defined starting point at each step. Finally consider various other kinds of in-
teractions that can be overlaid on basic interactions. such as help requests and status queries.
ATM example. Some vanations and exceptions follow. We could prepare scenarios for
each of these but will not go through the details here. (See the exercises.)

The ATM can’t read the card.

The card has expired.

The ATM tmes out waiting for a response,

The amount is invalid,

The machine is out of cash or paper.

The communication lines are down.

The transaction is rejected because of suspicious patterns of card usage.
There are additional scenarios for administrative parts of the ATM system, such as awthoriz-
ing new cards, adding banks to the consortium, and obtaining transaction logs. We will not
explore these aspects.

13.1.7 Finding External Events

Examine the scenarios to find all external events—include all imputs, decisions, interrupis,
and interactions to or from users or external devices. An event can trigger effects for a target
object. Internal computation steps are not events, excepd for computations that interact with



13.1.8 Preparing Activity Diagrams for Complex Use Cases

Sequence diagrams capture the dialog and interplay between actors, but they do not clearly
show altematives and decisions. For example, you need one sequence diagram for the main
flow of interaction and additional sequence diagrams for cach error and decision point. Ac-
tivity diagrams let you consolidate all this behavior by documenting forks and merges in the
control flow. It is cenainly appropnate 1o use activity diagrams to document business logic
during analysis, but do not usc them as an excuse to begin implementation,

ATM example. As Figure 13.5 shows, when the user inscerts a card, there are many pos-
s1blc responses. Some responses indicate a possible problem with the card or account; hence
the ATM retains the card. Only the successful completion of the tests allows ATM processing
o proceed.

13.1.9 Organizing Actors and Use Cases

The next step is to organize use cases with relationships (include, extend, and gencraliza-

uon—see Chapter 8). This is especially helpful for large and complex systems. As with the

class and state models, we defer organization until the base use cases are in place. Otherwise,

there is too much of a nisk of distorting the structure to match preconceived notions.
Similarly, you can also organize actors with gencralization. For example., an Adminis-

trator might be an Operator with additional privileges.

10. Chgéking against?he domain class model.

6B. Explain the steps for constructing application state model. 6M

The application state model focuses on application classes
- Augments the domain state model

Application State Model- steps

. Determine Application Classes with States

. Find events

. Build state diagrams

. Check against other state diagrams

. Check against the class model

. Check against the interaction model

AU, WN -

1. Determine Application Classes with States

* Good candidates for state models

- User interface classes

- Controller classes

- ATM example

- The controllers have states that will elaborate.
2. Find events

- Study scenarios and extract events.

- In domain model

- Find states and then find events

* In application model

- Find events first, and then find states

- ATM example

- Revisit the scenarios, some events are:

- Insert card, enter password, end session and take card.
3. Building State Diagrams



- To build a state diagram for each application class with temporal behaviour.
Initial state diagram

- Choose one of these classes and consider a sequence diagram.

- The initial state diagram will be a sequence of events and states.

- Every scenario or sequence diagram corresponds to a path through the state
diagram.

- Find loops

- If a sequence of events can be repeated indefinitely, then they form a loop.

- Merge other sequence diagrams into the state diagram.

- After normal events have been considered, add variation and exception cases.

- The state diagram of a class is finished when the diagram covers all scenarios and the
diagram handles all events that can affect a state.

- ldentify the classes with multiple states

- Study the interaction scenarios to find events for these classes

- Reconcile the various scenarios

- Detect overlap and closure of loops

4. check against other state diagrams

- Every event should have a sender and a receiver.

- Follow the effects of an input event from object to object through the system to make

sure that they match the scenarios.

- Objects are inherently concurrent.

- Make sure that corresponding events on different state diagrams are consistent.

- ATM example

- The SessionController initiates the TransactionController,

- The termination of the TransactionController causes the SessionController to resume.
5. Check against the class model

- ATM example

- Multiple ATMs can potentially concurrently access an account.

- Account access needs to be controlled to ensure that only one update at a time is applied.
6. Check against the interaction model

e Check the state model against the scenarios of the interaction model.

e Simulate each behaviour sequence by hand and verify the state diagrams.

» Take the state model and trace out legitimate paths.

7a. With the help of architecture of ATM system describe how to break a system into
subsystems in system design. 12M



ATM Consortium Bank
siations computer computers
[ 3 |
‘ r Cashier ]
!
ATM r 11 |
| Consortium | g?:{:g:"
Cash | comm ‘ —
Card | | tink  |— | Database
' | -——
| |station comm | || | Account |
| | code ul fink %’?:
e L | By Customer |
r(jsgr | bank ! l'—"‘ i Sttt |
- user i s | | Card
interface | | ~% Authorization
'lTransactIon[ L ————— { Transaction | [* = = {Transacﬂon
- I  § J | l ———

Figure 14.2 Architecture of ATM system. [t 15 often helpful 1o make an informal
diagram showing the organization of a system into subsystems.

Divide the system into pieces . Each piece of a system is called subsystem. A subsystem is a
group of classes, associations, operations, events, and constrains. A subsystem is usually
identified by the services it provides. Each subsystem has a well-defined interface to the rest of
the system.
The relation between two subsystems can be — Client-server relationship — Peer-to-peer
relationship
The decomposition of systems into subsystems is organized as a sequence of
— Horizontal layers,
— Vertical partitions, or
— Combination of layers and partitions.
1. LAYERS : Each built in terms of the ones below it. The objects in each layer can be
independent.
E.g. A client-server relationship. Problem statement specifies only the top and bottom layers:
— The top is the desired system.
— The bottom is the available resources.
The intermediate layers is than introduced. * Two forms of layered architectures:
— Closed architecture * Each layer is built only in terms of the immediate lower layer.
— Open architecture * A layer can use features on any lower layer to any depth
.» Do not observe the principle of information hiding.
2. PARTITIONS
Vertically divided into several subsystems .Independent or weakly coupled Each providing
one kind of service. E.g. A computer operating system includes
— File system
— Process control
— Virtual memory management
3. COMBINATION OF LAYERS AND PARTITIONS

Aoplications Aopplications

e %S

wWirtiesi Looeopies W L=l

FPartitiomn I



7b. Discuss about making a reuse plan in system design aM
Two aspects of reuse:

— Using existing things
— Creating reusable new things
Reusable things include: Models, Libraries, Frameworks ,Patterns

1. Libraries A library is a collection of classes that are useful in many contexts.
Qualities of “Good” class libraries:

— Coherence — well focused themes
— Completeness — provide complete behaviour

— Consistency - polymorphic operations should have consistent names and signatures across
classes.

— Efficiency — provide alternative implementations of algorithms.
— Extensibility — define subclasses for library classes
— Genericity — parameterized class definitions

Problems limit the reuse ability:

— Argument validation e Validate arguments by collection or by individual
— Error Handling e Error codes or errors

— Control paradigms e Event-driven or procedure-driven control
— Group operations

— Garbage collection
— Name collisions

2. Frameworks A framework is a skeletal structure of a program that must be elaborated to build a
complete application. Frameworks class libraries are typically application specific and not suitable
for general use.

3. Patterns A pattern is a proven solution to a general problem. There are patterns for analysis,
architecture, design, and implementation.
Benefits of Pattern

1. A pattern is considered by others and has already been applied to past problems .

2. When you use patterns, you tap into a language that is familiar to many developers

3. Patterns are prototypical model fragments that distil some of the knowledge of experts.
Pattern vs. Framework

1.A pattern is typically a small number of classes and relationships.
2 A framework is much broader in scope and covers an entire subsystem or application.

8a. Briefly explain the design optimization with reference to class design. 8M
The design model builds on the analysis model. The analysis model captures the logic

of a system, while the design model adds development details. You can optimize the ineffi-
cient but semantically correct analysis model to improve performance, but an optimized sys-
tem is more obscure and less likely to be reusable. You must strike an appropriate balance
between efficiency and clarity. Design optimization involves the following tasks.

B Provide efficient access paths.

B Rearrange the computation for greater efficiency.

B Save intermediate results to avoid recomputation.

15.7.1 Adding Redundant Associations for Efficient Access
Redundant associations are undesirable during analysis because they do not add information.
Design, however, has different motivations and focuses on the viability of a model for im-

implementation.



For an example, consider the design of a company’s employee skills database. Figure
15.5 shows a portion of the analysis class model. The operation Company.findSkill() returns
a set of persons in the company with a given skill. For example, an application might need
all the employees who speak Japanese.

Employs o HasSkill Skill
1 * # %

Company

Figure 15.5 Analysis model for person skills. Derived data is undesirable
during analysis because it does not add information.

The derived association does not add any information but permits
fast access to employees who speak a particular language. Indexes incur a cost: They require
additional memory and must be updated whenever the base associations are updated. As the
designer, you decide when it is worthwhile to build indexes. Note that if most queries return
a high fraction of the objects in the search path, then an index really does not save much.

/ SpeakslLanguage
sk
language R
Company ; Employs 5 Person . HasSkil = Skill

Figure 15.6 Design model for person skills. Derived data is acceptable during
design for operations that are significant performance bottlenecks.

Start by examining each operation and see what associations it must traverse to obtain
its information. Next, for each operation, note the following.

B Frequency of access. How often is the operation called?

B Fan-out. What is the “fan-out” along a path through the model? Estimate the average
count of each “many” association encountered along the path. Multiply the individual
fan-outs to obtain the fan-out of the entire path, which represents the number of accesses
on the last class in the path. “One” links do not increase the fan-out, although they in-
crease the cost of each operation slightly; don’t worry about such small effects.

B Selectivity. What is the fraction of “hits” on the final class—that is, objects that meet
selection criteria and are operated on? If the traversal rejects most objects, then a simple
nested loop may be inefficient at finding target objects.

15.7.2 Rearranging Execution Order _for Efficiency

After adjusting the structure of the class model to optimize frequent traversals, the next thing
to optimize is the algorithm itself. One key to algorithm optimization is to eliminate dead
paths as early as possible. For example, suppose an application must find all employees who
speak both Japanese and French. Suppose 5 employees speak Japanese and 100 speak
French: it is better to test and find the Japanese speakers first, then test if they speak French.
In general, it pays to narrow the search as soon as possible. Sometimes you must invert the
execution order of a loop from the original specification.



15.7.3 Saving Derived Values to Avoid Recomputation

Sometimes it is helpful to define new classes to cache derived attributes and avoid recompu-
tation. You must update the cache if any of the objects on which it depends are changed.
There are three ways to handle updates.

Explicit update. The designer inserts code into the update operation of source attributes
to explicitly update the derived attributes that depend on it.

Periodic recomputation. Applications often update values in bunches. You could re-
compute all the derived attributes periodically, instead of after each source change. Pe-
riodic recomputation is simpler than explicit update and less prone to bugs. On the other
hand, if the data changes incrementally a few objects at a time, full recomputation can
be inefficient.

Active values. An active value is a value that is automatically kept consistent with its
source values. A special registration mechanism records the dependency of derived at-
tributes on source attributes. The mechanism monitors the values of source attributes
and updates the values of the derived attributes whenever there is a change. Some pro-

gramming languages provide active values.

8b. Explain the steps to be performed in designing algorithm for class design. 8M
Formulate an algorithm for each operation. The analysis specification tells what the operation does for
its Clients. The algorithm show how it is done

1. Choosing algorithms (Choose algorithms that minimize the cost of implementing operations)
When efficiency is not an issue, you should use simple algorithms. Typically, 20% of the operations
consume 80% of execution time. Considerations for choosing alternative algorithms

a. Computational complexity

b. Ease of implementation and understand ability

c. Flexibility

Simple but inefficient. Complex efficient

2. Choosing Data Structures (select data structures appropriate to the algorithm)

a. Algorithms require data structures on which to work.

b. They organize information in a form convenient for algorithms.

c. Many of these data structures are instances of container classes.

d. Such as arrays, lists, queues, stacks, set...etc.

3. Defining New Internal Classes and Operations

a. To invent new, low-level operations during the decomposition of high-level operations.

b. The expansion of algorithms may lead you to create new classes of objects to hold intermediate
results.

ATM Example:

i. Process transaction uses case involves a customer receipt.

ii. A Receipt class is added.

4. Assigning Operations to Classes (assign operations to appropriate classes)

a. How do you decide what class owns an operation?

i. Receiver of action: To associate the operation with the target of operation, rather than the initiator.
ii Query vs. update : The object that is changed is the target of the operation

iii Focal class : Class centrally located in a star is the operation’s target

iv. Analogy to real world

9a. Define pattern. Explain the pattern description template. 8M

Abstracting from specific problem-solution pairs and distilling out common factors leads to patterns.
Each pattern is a three part rule:

¢ a relation between a certain context

* a problem

¢ and a solution



Pattern Categories

Some patterns help in structuring a software system into subsystems. Other patterns support the
refinement of subsystems and components, or of the relationships between them. Further patterns
help in implementing particular design aspects in a specific programming language.

Patterns also range from domain-independent ones, such as those for decoupling interacting
components, to patterns addressing domain-specific.

We group patterns into three categories:

Architectural patterns

Design patterns

Idioms

Name The name and a short summary of the pattern.

Also Known As Other names for the pattern, if any are known.

Example A real-world example demonstrating the existence of the problem and the need for the pattern.
Context The situations in which the pattern may apply

Problem The problem the pattern addresses, including a discussion of its associated forces.

Solution The fundamental solution principle underlying the pattern.

Structure A detailed specification of the structural aspects of the pattern.

Dynamics Typical scenarios describing the run-time behavior of the pattern.

Implementation : Guidelines for implementing the pattern. These are only a suggestion, not an
immutable rule. You should adapt the implementation to meet your needs, by adding different,
extra, or more detailed steps, or by re-ordering the steps.

Example Resolved : Discussion of any important aspects for resolving the example that are not yet
covered in the Solution, Structure, Dynamics and implementation sections.

Variants : A brief description of variants or specializations of a pattern.

Known Uses : Examples of the use of the pattern, taken from existing systems.

Consequences : The benefits the pattern provides, and any potential liabilities.

See Also : References to patterns that solve similar problems, and to patterns

that help us refine the pattern we are describing.

9b. Briefly explain Forwarder-Receiver pattern. 8M

Forwarder-Receiver design pattern Provides transparent inter process

communication for software systems with peer-to-peer interaction model. It

introduces forwarders and receivers to decouple peers from the underlying

communication mechanisms.

Example: The company Dwarf Ware offers applications for the management of

the computer networks. System consists of agent processes written in Java that

run on each available network node.

Context — peer-to-peer communication

Problem forces —

1.The system should allow the exchangeability of the communication
mechanisms.

2.The co-operation of components follows a peer-to-peer model, in which a
sender only needs to know names of its receivers.

3.The communication between peers should not have a major impact on
performance.

Solution — peers may act as clients or servers. Therefore the details of the
underlying IPC mechanisms for sending or receiving messages are hidden from



peers by encapsulating all system-specific functionality into separate
components. system specific functionalities are the mapping of names to physical
locations, the establishment of communication channels and marshalling and un
marshalling messages.

Structure
Class Collaborators Class Collaborators
Forwarder * Recelver Recelver = Forwarder
Responsibility Responsibility

* Provides a general
Interface for
sending messages.

* Marshals and
delivers messages
to remote recelvers.

* Provides a general
interface for

recelving messages.

* Recedves and
unmarshals
messages from

* Maps names to remote forwarders.

physical addresses.

Class Collaboraters
Feoer * Forwarder
r * Reced
Responsibility resher
* Provides
application
services.

= Communicates
writh other peers.

The static relationships in the Forwarder-Receiver design pattern are shown in the diagram
below.

To send a message to a remote peer, the peer invokes the method sendMsg of its
forwarder, passing the message as an argument. The method sendMsg must convert
messages to a format that the underlying IPC mechanism understands. For this purpose, it
calls marshal. sendMsg uses deliver to transmit the IPC message data to a remote receiver.
When the peer wants to receive a message from a remote peer, it invokes the receiveMsg
method of its receiver, and the message is returned. receiveMsg invokes receive, which
uses the functionality

of the underlying IPC mechanism to receive IPC messages. After message reception
receiveMsg calls unmarshal to convert IPC messages to a format that the peer understands.

Forwarder Receiver |
mearsval IPC recelve
deliver unmarshal
L senadhisg recefvebisg
serudbisg | | receivehisg
- Pear 1 - Pear 2
1:1 optionol 5| ———
[ abg i w b 'ty P ]
SErvibee - o J
recelvebsg | s ] Bl g
| | Receiver Forwarder
recelve sl
umnmmarshal deliver
receivelbsg serdMsg




Dynamics

The following scenario illustrates a typical example of the use of a Forwarder-Receiver
structure.

Two peers pl and p2 communicate with each other. For this purpose, Pl uses a forwarder
forwl and a

receiver Recv2 handles all message transfers with a forwarder Forw2 and a receiver Recv2
:Pl requests a service from a remote peer2.Fo r this purpose, it sends the request to its
forwarder forw1 and specifies the name of the recipient.

Forw1 determines the physical location of the remote peer and marshals the
message.Forw1 delivers the message to the remote receiver Recv2.At some earlier time P2
has requested its receiver Recv2 to wait for an incoming request. Now, Recv2 receives the
message arriving from Forw1.

Recv2 unmarshals the message and forwards it to its peer2 .Meanwhile. pl calls Its receiver
Recvl to wait for a response.

P2 performs the requested service, and sends the result and the name of the recipient pl to
the forwarder forw2.T he forwarder marshals the result and delivers it Recv | . Recvl receives
the response from P2, unmarshals it and delivers it to P1.

Peer Forwarder Receiver Recelver Forwarder Peer
Pl Forwl Recvl Recv2 Forw2 P2
SC'\"C'?[ sendMsg Lional veMag [
[C;“rnzgss ;Ltl i
marshall boundary
deltver
receive
unmarshal
receiveMsg
p— >.,
sendMsg
marshal =
deliver
receive
unmarshal
E 1
10a. Explain the structure of Client-Dispatcher server pattern. 8M
Intent :

The Client-Dispatcher-Server design pattern introduces an intermediate layer between clients and
servers, the dispatcher component. It provides location transparency by means of a name service,
and hides the details of the establishment of the communication connection between clients and

servers.



Context A software system integrating a set of distributed servers, with the servers running locally or
distributed over a network.

Problem When a software system uses servers distributed over a network it must provide a means
for communication between them. In many cases a connection between components may have to
be established before the communication can take place, depending on the available
communication facilities. However, the core functionality of the components should be separate
from the details of communication mechanisms. Clients should not need to know where servers are
located.

We have to balance the following forces:

e A component should be able to use a service independent of the location of the service
provider.

e The code implementing the functional core of a service consumer should be separate from the
code used to establish a connection with service providers.

Solution : Provide a dispatcher component to act as an intermediate layer between clients and
servers. The dispatcher implements a name service that allows clients to refer to servers by names
instead of physical locations, thus providing location transparency. In addition, the dispatcher is
responsible for establishing the communication channel between a client and a server.

Add servers to the application that provides services to other components. Each server is uniquely
identified by its name, and is connected to clients by the dispatcher.

Clients rely on the dispatcher to locate a particular server and to establish a communication link with
the server. In contrast to traditional Client-Server computing, the roles of clients and servers can
change dynamically.

Structure:

Class Collaborators Class | collaborators
Client # Dispatcher Server & Clent
Responsibility * Server Responsibility Dispatcher
* Implements a * Provides serices 1o

system lask. | clienis,
* Hequests Server * Replsters itself with
connectons from the dispaticher.
the dispatcher,
* [nvokes services of
SETVETS, 1
| |
| Class [ cottaborators
Dispatcher = et
* Server

| Responsibility

* Establishes

communicaton

channels between

cllents and servers.

Locales servers.

(Un-)Registers

SETVELS

* Malntalns a map of
server locations.




Cllent —
| doTask returns acceptConnection

| sendRequest

10b. Describe Whole-Part design pattern.

The statie relationships between clients, servers and the dispatcher
are as follows:

requests
service

—

Server

result
TUrESE VRS

recelve Bequest
DMaspatcher eheas
requests e
etomnaction |'b-l:&l_‘m'|.'h!|ap regiaters
- actepls

reglslerService

unreglstersServer link

locateServer estabilshes
establishChannel copirvectlon
getChannel

b

8M

The Whole-Part design pattern helps with the aggregation of components that together

form a semantic unit. An aggregate component, the whole, encapsulates its constituent

components, the Parts, organizes their collaboration, and provides a common interface to

its functionality. Direct access to the Parts Is not possible.

Context : Implementing aggregate objects.
Problem:

A complex object should either be decomposed into smaller objects, or composed of
existing objects, to support reusability, changeability and the recombination of the
constituent objects in other types of aggregate.

Clients should see the aggregate object as an atomic object that does not allow any
direct access to its constituent parts.

Solution:

Use a component that encapsulates smaller objects, and prevents clients from
accessing these constituent parts directly.

Use an interface as the only means of access to the functionality of the encapsulated
objects.

An assembly-parts relationship differentiates between a product and its parts or
subassemblies

A container-contents relationship.

A collection-members relationship helps to group similar objects - such as an
organization and its members

Structure:
Class Collaborators Class Collaborators
Whole * Part Part -
Responsibility Responsibility

* Aggregates several
smaller objects.

* Provides services
built on top of part
objects.

* Acts as a wrapper
around lts
constituent parts.

* Represents a
particular object
and its services.




The static relationships between a Whole and its Parts are illustrated in the OMT diagram
below:

PartA

serviceAl
serviceAl

Client | Whole

combines

doTask callsService | servicel <> ——f ——— .. other Parts
service2

PartN

serviceN 1

serviceNZ2

Implementation:

1.Design the public interface of the Whole.

2.Separate the Whole into Parts, or synthesize it from existing ones. There are two
approaches to assembling the Parts you need—either assemble a Whole 'bottom-up' from
existing Parts, or decompose it 'top-down' into smaller Parts:

e  The bottom-up approach allows you to compose Wholes from loosely-coupled
Parts that you can later reuse when implementing other types of Whole.

e The top-down approach makes it is possible to cover all of the Whole 's
functionality. Partitioning into Parts is driven by the services the Whole provides
to its clients, freeing you from the requirement to implement glue code.

3. If you follow a bottom-up approach, use existing Parts from component libraries or class
libraries and specify their collaboration.

4. If you follow a top-down approach, partition the Whole 's services into smaller
collaborating services and map these collaborating services to separate Parts.

5.Specify the services of the Whole in terms of services of the Parts. In the structure you
found in the previous two steps, the Whole is represented as a set of collaborating Parts
with separate responsibilities.

6. Implement the Parts.

7. Implement the Whole.



