

1 | P a g e

2 | P a g e

CBSE Scheme – VTU MCA Degre Exam – Dec 2018/Jan 2019

16MCA553 - Service Oriented Architecture

1.a) Explain in detail the main principles adopted during the service design

 Loose coupling Services maintain a relationship that minimizes dependencies and only

requires that they retain an awareness of each other.

 Service contract Services adhere to a communications agreement, as defined collectively

by one or more service descriptions and related documents.

 Autonomy Services have control over the logic they encapsulate.

 Abstraction Beyond what is described in the service contract, services hide logic from the

outside world.

 Reusability Logic is divided into services with the intention of promoting reuse.

 Composability Collections of services can be coordinated and assembled to form

composite services.

 Statelessness Services minimize retaining information specific to an activity.

 Discoverability Services are designed to be outwardly descriptive so that they can be

found and assessed via available discovery mechanisms.

1.b) Discuss with suitable diagram the primary characteristics of 2 tier client server

architecture in comparison with corresponding SOA

Architecture is an abstract which explains the technology, boundaries, rules, limitations, and

design

characteristics that apply to all solutions based on this template.

Client-server architecture: a brief history

computerized often are considered the first inception of client-server architecture.

-ends served thin clients, are considered

an implementation of the single-tier client-server architecture

Example: The latter approach was used primarily to allow the server to continuously receive

characters from the terminal in response to individual key-strokes. Only upon certain conditions

would the server actually respond.

individual workstations, resulting in the birth of the fat client.

-interface (GUI), two-tier client-

server was considered a huge step forward.

own connection to a database on a central server.

3 | P a g e

-side software performed the bulk of the processing, including all presentation-related

and most data access logic One or more servers facilitated these clients by hosting scalable

RDBMSs.

The primary characteristics of the two-tier client-server architecture individually and

comparing them to the corresponding parts of SOA.

Application logic
Client-server environments place the majority of application logic into the client software.

This results in a monolithic executable that controls the user experience, as well as the back-end

resources. One exception is the distribution of business rules.

procedures and triggers on the database.

4 | P a g e

programming.

tion layer within contemporary service-oriented solutions can vary. Any piece of

software capable of exchanging SOAP messages according to required service contracts can be

classified as a service requestor.

to be services as well, presentation layer

designs are completely open and specific to a solution's requirements.

how it can be distributed. These options do not preclude the use of database triggers or stored

procedures.

Service-oriented design principles come into play, often dictating the partitioning of

processing logic into autonomous units.

elessness and interoperability, as

well as future composability and reusability.

-agnostic. This

supports the ultimate goal of promoting reuse and loose coupling across application boundaries.

Application processing
Client-server application logic resides in the client component; the client workstation is

responsible for the bulk of the processing.

cally

performing twenty percent of the work.

-tier client-server solution with a large user-base generally requires that each client

establish its own database connection.

 persistent

(meaning that they are generated upon user login and kept active until the user exits the

application).

overwhelm database servers, imposing processing latency on all users.

In SOA is highly distributed. Each service has an explicit functional boundary and related

resource requirements. In modeling a technical service-oriented architecture, many choices are

there to position and deploy services.

solutions consist of multiple servers, each hosting sets of Web services and

supporting middleware.

required, and performance demands are one of several factors in determining the physical

deployment configuration.

e synchronous or asynchronous.

message patterns are utilized.

achieving message-level context management are provided.

processing by reducing the need for runtime caching of state information.

Technology
Client-server applications use the 4GL programming languages, such as Visual Basic and

PowerBuilder.

5 | P a g e

providing the ability to create aesthetically rich and more interactive user-interfaces.

languages, such as C++, were also still used, especially for solutions that had more rigid

performance requirements.

-end, major database vendors, such as Oracle, Informix, IBM, Sybase, and

Microsoft, provided robust RDBMSs that could manage multiple connections, while providing

flexible data storage and data management features.

The technology set used by SOA actually has not changed as much as it has expanded

n be used to

create Web services, and the use of relational databases still is commonplace.

rary

SOA brings with it the absolute requirement that an XML data representation architecture be

established, along with a SOAP messaging framework, and a service architecture comprised of

the ever-expanding Web services platform.

Security
Client-server architecture security is centralized at the server level

these to individual parts of the physical data model.

hin the client executable, especially when it relates to

specific business rules that dictate the execution of application logic (such as limiting access to a

part of a user-interface to select users).

-level security can be incorporated to achieve a single sign-on, where

application clearance is derived from the user's operating system login account information.

complexity directly relational to the degree of security measures required.

-Security

framework.

Administration
-server era ended was the increasingly large maintenance

costs associated with the distribution and maintenance of application logic across user

workstations.

redistribution of the client software to all workstations.

nments, this resulted in a highly burdensome administration process.

environment-specific problems because different workstations could have different software

programs installed or may have been purchased from different hardware vendors.

-side demands on databases, especially when a client-server

application expanded to a larger user base.

Service-oriented solutions can have a variety of requestors; they are not necessarily immune

to client-side maintenance challenges. While their distributed back-end does accommodate

scalability for application and database servers, new administration demands can be introduced.

e SOAs evolve to a state where services are reused and become part of

multiple service compositions, the management of server resources and service interfaces can

require powerful administration tools, including the use of a private registry

6 | P a g e

2.a) What are the characteristics of contemporary SOA? Explain

1. Contemporary SOA is at the core of the service-oriented computing platform.

2. Contemporary SOA increases quality of service.

3. Contemporary SOA is fundamentally autonomous.

4. Contemporary SOA is based on open standards.

5. Contemporary SOA supports vendor diversity.

6. Contemporary SOA fosters intrinsic interoperability.

7. Contemporary SOA promotes discovery.

8. Contemporary SOA promotes federation.

9. Contemporary SOA promotes architectural composability.

10. Contemporary SOA fosters inherent reusability.

11. Contemporary SOA emphasizes extensibility.

12. Contemporary SOA supports a service-oriented business modeling paradigm.

13. Contemporary SOA implements layers of abstraction.

14. Contemporary SOA promotes loose coupling throughout the enterprise.

15. Contemporary SOA promotes organizational agility.

16. Contemporary SOA is a building block.

17. Contemporary SOA is an evolution.

18. Contemporary SOA is still maturing.

19. Contemporary SOA is an achievable ideal.

1. Contemporary SOA is at the core of the service-oriented computing platform.

- SOA is used to qualify products, designs, and technologies an application computing

platform consisting of Web services technology and service-orientation principles

- Contemporary SOA represents an architecture that promotes service-orientation

through the use of Web services.

2. Contemporary SOA increases quality of service.

- The ability for tasks to be carried out in a secure manner, protecting the contents of a

message, as well as access to individual services.

- Allowing tasks to be carried out reliably so that message delivery or notification of

failed delivery can be guaranteed.

- Performance requirements to ensure that the overhead imposed by SOAP message

and XML content processing does not inhibit the execution of a task.

- Transactional capabilities to protect the integrity of specific business tasks with a

guarantee that should the task fail, exception logic is executed.

3.Contemporary SOA is fundamentally autonomous.

7 | P a g e

- The service-orientation principle of autonomy requires that

o individual services be as independent and

o self-contained as possible with respect to the control they maintain over their

underlying logic.

4.Contemporary SOA is based on open standards.

- Significant characteristic of Web services is the fact that

o data exchange is governed by open standards.

o After a message is sent from one Web service to another it travels via a set of

protocols that is globally standardized and accepted.

5.Contemporary SOA supports vendor diversity.

- Organizations continue itsbuilding solutions with existing development tools and

server products.

- It is continue to leveraging(maximizing) the skill sets of in-house resources.

- Choice to explore the offerings of new vendors is always possible.

- This option is made possible by the

o open technology provided by the Web services framework

o the standardization and principles introduced by SOA.

6.Contemporary SOA promotes discovery.

- SOA supports and encourages the advertisement and discovery of services throughout

the enterprise and beyond.

- A serious SOA will likely rely on some form of service registry or directory to

manage service descriptions

8 | P a g e

7.Contemporary SOA foster(advance) intrinsic(essential) interoperability.

- To leveraging(maximizing) and supporting the

o required usage of open standards,

o a vendor diverse environment, and

o the availability of a discovery mechanism

is called intrinsic interoperability

- Whether an application actually has immediate integration requirements or not

design principles can be applied to outfit services with characteristics that naturally

promote interoperability.

8.Contemporary SOA promotes federation.

- Establishing SOA within an enterprise does not necessarily require that you replace what you

already have.

- SOA has the ability to introduce unity across previously non-federated environments.

- Web services enable federation

- SOA promotes by establishing and standardizing the ability to encapsulate legacy and non-

legacy application logic and by exposing it via a common, open, and standardized

communications framework

9 | P a g e

2.b) Explain in detail the SOA timeline

An SOA timeline (from XML to Web services to SOA)

• XML was a W3C creation derived from the popular Standard Generalized Markup

Language (SGML) that has existed since the late 60s.

• World Wide Web Consortium (W3C) is the main international standards organization

for WWW

• purpose : Working together in the development of standards for the World Wide Web

• Widely used meta language

• It allowed Organizations to add intelligence to raw document data.

• XML gained popularity during the eBusiness movement of the late 90s

• Server-side scripting languages made conducting business via the Internet viable.

• By XML, developers were able to attach meaning and context to any piece of information

transmitted across Internet protocols.

• Not only was XML used to represent data in a standardized manner, but the language

itself was used as the basis for a series of additional specifications.

• The XML Schema Definition Language (XSD) and the XSL Transformation Language

(XSLT) were both authored using XML.

• These specifications, in fact, have become key parts of the core XML technology set.

• The XML data representation architecture represents the foundation layer of SOA.

• XSD schemas preserve the integrity and validity of message data,

• XSLT is employed to enable communication between disparate data representations

through schema mapping.

4.1.2. Web services: a brief history

 In 2000, the W3C received a submission for the Simple Object Access Protocol (SOAP)

specification. It is designed to unify the RPC communication.

 The idea was for parameter data transmitted between components to be serialized into

XML, transported, and then deserialized back into its native format.

 Increase in the eBusiness technology, vendor expecting proprietary-free Internet

communications framework.

 This ultimately led to the idea of creating a pure, Web-based, distributed technology one

that could leverage the concept of a standardized communications framework to bridge

the enormous disparity that existed between and within organizations. This concept was

called Web services.

 The most important part of a Web service is its public interface.

10 | P a g e

 It is a central piece of information that assigns the service an identity and enables its

invocation.

 So, one of the first initiatives in support of Web services was the Web Service

Description Language(WSDL).

 To open interoperability, Web services required an Internet-friendly and XML-compliant

communications format that could establish a standardized messaging framework.

 Alternatives, such as XML-RPC, were considered, SOAP won out as the industry

favorite and remains the foremost messaging standard for use with Web services.

 In support of SOAP's new role, the specification to allow for both RPC-style and

document-style message types.

 The document style message used more frequently within SOAs.

 Eventually, the word "SOAP" was no longer considered an acronym for "Simple Object

Access Protocol."

 As of version 1.2 of the specification, it became a standalone term.

 UDDI(Universal Description, Discovery, and Integration) specification added in first

generation web services.. Originally developed by UDDI.org, it was submitted to OASIS,

which continued its development in collaboration with UDDI.org.

 This specification allows for the creation of standardized service description registries

both within and outside of organization boundaries. UDDI provides the potential for Web

services to be registered in a central location, from where they can be discovered by

service requestors.

 Unlike WSDL and SOAP, UDDI has not yet attained industry-wide acceptance, and

remains an optional extension to SOA.

 Existing messaging platforms, such as messaging-oriented middleware (MOM) products,

incorporated Web services to support SOAP in addition to other message protocols.

 Some organizations were also able to immediately incorporate Web services to facilitate

B2B data exchange requirements often as an alternative to EDI (Electronic Data

Interchange).

4.1.3. SOA: a brief history

• First-generation Web services standards fulfilled this model as follows:

• WSDL described the service.

• SOAP provided the messaging format used by the service and its requestor.

• UDDI provided the standardized service registry format.

• Numerous of the contemporary SOA characteristics

• Aggressive development and collaborative initiatives which have produced a series of

extensions to the first-generation Web services platform. Known as the "second-

generation" or "WS-*" specifications

• These extensions address specific areas of functionality with the overall goal of elevating

the Web services technology platform to an enterprise level

• Through service-orientation, business logic can be cleanly encapsulated and abstracted

from the underlying automation technology.

11 | P a g e

• This vision has been further supported by the rise of business process definition

languages, most notably WS-BPEL.

How SOA is re-shaping XML and Web services

• SOA introduces boundaries and rules.

• Contemporary SOA is made possible by the XML and Web services technology

platforms.

• These platforms are required to undergo a number of changes in order for their respective

technologies to be properly positioned and utilized within the confines of service-oriented

architectures.

• Traditional distributed application environments that use XML or Web services are

therefore in for some rewiring as service-oriented design principles require a change in

both technology and mindset.

• Following are some examples of potential issues you may be faced with when having to

retrofit existing implementations.

• SOA requires that data representation and service modeling standards now be kept in

alignment. Fundamental to fostering intrinsic interoperability.

• SOA relies on SOAP messaging for all inter-service communication.

• SOA standardizes the use of a document-style messaging. The shift from RPC-style to

document-style messages imposes change on the design of service descriptions.

• Due to this emphasis on document-style SOAP messages, SOA promotes a content and

intelligence-heavy messaging model. This supports service statelessness and autonomy,

and minimizes the frequency of message transmissions

• Until the advanced messaging capabilities of WS-* extensions become commonplace,

many applications will need to be outfitted with custom SOAP headers to implement

interim solutions to manage complex message exchanges

Module -2

3.a) Discuss the primitive and complex message exchange pattern

Message exchange patterns
Every task automated by a Web service can differ in both the nature of the application logic

being executed and the role played by the service in the overall execution of the business task.

Regardless of how complex a task is, almost all require the transmission of multiple messages.

The challenge lies in coordinating these messages in a particular sequence so that the individual

actions performed by the message are executed properly and in alignment with the overall

business task .

The fundamental characteristic of the fire-and-forget pattern is that a response to a transmitted

message is not expected.

12 | P a g e

Message exchange patterns (MEPs) represent a set of templates that provide a group of already

mapped out sequences for the exchange of messages. The most common example is a request

and response pattern. Here the MEP states that upon successful delivery of a message from one

service to another, the receiving service responds with a message back to the initial requestor.

Many MEPs have been developed, each addressing a common message exchange requirement. It

is useful to have a basic understanding of some of the more important MEPs, as you will no

doubt be finding yourself applying MEPs to specific communication requirements when

designing service-oriented solutions.

Primitive MEPs

Before the arrival of contemporary SOA, messaging frameworks were already well used by

various messaging-oriented middleware products. As a result, a common set of primitive MEPs

has been in existence for some time.

Request-response

This is the most popular MEP in use among distributed application environments and the one

pattern that defines synchronous communication (although this pattern also can be applied

asynchronously).

The request-response MEP establishes a simple exchange in which a message is first transmitted

from a source (service requestor) to a destination (service provider). Upon receiving the

message, the destination (service provider) then responds with a message back to the source

(service requestor).

Fire-and-forget

This simple asynchronous pattern is based on the unidirectional transmission of messages from a

source to one or more destinations .

A number of variations of the fire-and-forget MEP exist, including:

The single-destination pattern, where a source sends a message to one destination only.

The multi-cast pattern, where a source sends messages to a predefined set of destinations.

The broadcast pattern, which is similar to the multi-cast pattern, except that the message is sent

out to a broader range of recipient destinations.

13 | P a g e

Complex MEPs

Even though a message exchange pattern can facilitate the execution of a simple task, it is really

more of a building block intended for composition into larger patterns. Primitive MEPs can be

assembled in various configurations to create different types of messaging models, sometimes

called complex MEPs.

The publish-and-subscribe pattern introduces new roles for the services involved with the message

exchange. They now become publishers and subscribers, and each may be involved in the

transmission and receipt of messages. This asynchronous MEP accommodates a requirement for a

publisher to make its messages available to a number of subscribers interested in receiving them.

Step 1 in the publish-and-subscribe MEP could be implemented by a request-response MEP, where

the subscriber's request message, indicating that it wants to subscribe to a topic, is responded to by a

message from the publisher, confirming that the subscription succeeded or failed.

Step 2 then could be supported by one of the fire-and-forget patterns, allowing the publisher to

broadcast a series of unidirectional messages to subscribers

14 | P a g e

3.b) With neat diagram explain coordinator service model and also explain service

coordinator composition

 Every activity introduces a level of context into an application runtime environment.

Something that is happening or executing has meaning during its lifetime, and the description

of its meaning (and other characteristics that relate to its existence) can be classified as

context information.

 The more complex an activity, the more context information it tends to bring with it. The

complexity of an activity can relate to a number of factors, including:

– the amount of services that participate in the activity

– the duration of the activity

– the frequency with which the nature of the activity changes – whether or not multiple

instances of the activity can concurrently exist

 A framework is required to provide a means for context information in complex activities to

be managed, preserved and/or updated, and distributed to activity participants. Coordination

establishes such a framework.

Coordinator composition

15 | P a g e

WS-Coordination establishes a framework that introduces a generic service based on the

coordinator service model. This service controls a composition of three other services that each

play a specific part in the management of context data

The coordinator composition consists of the following services:

• Activation service Responsible for the creation of a new context and for associating this

context to a particular activity.

• Registration service Allows participating services to use context information received

from the activation service to register for a supported context protocol.

• Protocol-specific services These services represent the protocols supported by the

coordinator's coordination type.

• Coordinator The controller service of this composition, also known as the coordination

service.

4.a) Explain with neat diagram the structure of SOAP

5.4. Messaging (with SOAP)

 All communication between services is message-based,

 The messaging framework chosen must be standardized so that all services, regardless of

origin, use the same format and transport protocol.

 Message-centric application design that an increasing amount of business and application

logic is embedded into messages.

 The SOAP specification was chosen to meet all of these requirements

 Universally accepted as the standard transport protocol for messages processed by Web

services

5.4.1. Messages

Simple Object Access Protocol, the SOAP specification's main purpose is to define a standard

message format.

16 | P a g e

The structure of this format is quite simple, but its ability to be extended and customized

Envelope, header, and body

Every SOAP message is packaged into a container known as an envelope.

Much like the metaphor this conjures up, the envelope is responsible for housing all parts of the

message

 Each message can contain a header, an area dedicated to hosting meta information.

 Service-oriented solutions, this header section important

 The actual message contents consists of XML formatted data.

 The contents of a message body are often referred to as the message payload.

Header blocks

 SOAP communications framework used by SOAs, the creating messages that are

intelligence-heavy and self-sufficient

 Independence that increases the robustness and extensibility

 Message independence is implemented through the use of header blocks

 packets of supplementary meta information stored in the envelope's header area.

 It further reinforces the characteristics of contemporary SOA related to fostering reuse,

interoperability, and composability.

 Examples of the types of features a message can be outfitted with using header blocks

include:

o processing instructions that may be executed by service intermediaries or the

ultimate receiver

o routing or workflow information associated with the message

o security measures implemented in the message

17 | P a g e

o reliability rules related to the delivery of the message

o context and transaction management information

o correlation information

Message styles

 The SOAP specification was originally designed to replace proprietary RPC protocols

 Distributed components to be serialized into XML documents, transported, and then

deserialized into the native component format upon arrival.

Two types of Message styles

1. RPC-style message runs contrary to the emphasis SOA places on independent,

intelligence-heavy messages.

2. SOA relies on document-style messages to enable larger payloads, coarser interface

operations, and reduced message transmission volumes between services.

Attachments

 To facilitate requirements for the delivery of data not so easily formatted into an XML

document, the use oSf OAP attachment technologies exist.

 Each provides a different encoding mechanism used to bundle data in its native format

with a SOAP message.

 SOAP attachments are commonly employed to transport binary files, such as images.

Faults

 SOAP messages offer the ability to add exception handling logic by providing an

optionafla ult section

 It resides within the body area.

 The typical use for this section is to store a simple message used to deliver error

condition information when an exception occurs.

4.b) Compare and contrast the choreography and orchestration in SOA with reference to

web service.

 Both Orchestrations and choreographies represent complex message interchange patterns

 Both include multi-organization participants.

 An orchestration expresses organization-specific business workflow. This means that an

organization owns and controls the logic behind an orchestration, even if that logic involves

interaction with external business partners.

 A choreography, on the other hand, is not necessarily owned by a single entity. It acts as a

community interchange pattern used for collaborative purposes by services from different

provider entities

18 | P a g e

Figure 6.39. A choreography enabling collaboration between two different orchestrations

Module – 3

5.a) What are the security requirement in web service design

WS-Security specification comprise such a framework, further broadened by a series Of

supplementary specifications with specialized feature sets. The basic functions performed by the

following three core specifications:

 WS-Security

 XML-Signature

 XML-Encryption

A family of security extensions parented by the WS-Security specification comprise such a

framework, further broadened by a series Of supplementary specifications with specialized

feature sets. The basic functions performed by the following three core specifications:

 WS-Security

 XML-Signature

 XML-Encryption

Additionally, we'll briefly explore the fundamental concepts behind single sign-on, a form of

centralized security that complements these WS-Security extensions. Before we begin, it is worth

noting that this section organizes security concepts as they pertain to and support the following

five common security requirements: identification, authentication, authorization, confidentiality,

and integrity.

19 | P a g e

Identification, authentication, and authorization

For a service requestor to access a secured service provider, it must first provide information that

expresses its origin or owner. This is referred to as making a claim Claims are represented by

identification information stored in the SOAP header. WS-Security establishes a standardized

header block that stores this information, at which point it is referred to as a token.

Authentication requires that a message being delivered to a recipient prove that the message is in

fact from the sender that it claims to be. In other words, the service must provide proof that its

claimed identity is true.

Single sign-on

A challenge facing the enablement of authentication and authorization within SOA is

propagating the authentication and authorization information for a service requestor across

multiple services behind the initial service provider. Because services are autonomous and

independent from each other, a mechanism is required to persist the security context established

after a requestor has been authenticated. Otherwise, the requestor would need to re-authenticate

itself with every subsequent request. The concept of single sign-on addresses this issue. The use

of a single sign-on technology allows a service requestor to be authenticated once and then have

its security context information shared with other services that the requestor may then access

without further authentication.

There are three primary extensions that support the implementation of the single signon concept:

• SAML (Security Assertion Markup Language)

• .NET Passport

• XACML (XML Access Control Markup Language)

Confidentiality and integrity

Confidentiality is concerned with protecting the privacy of the message contents. A message is

considered to have remained confidential if no service or agent in its message path not

authorized to do so viewed its contents.

Transport-level security and message-level security

The type of technology used to protect a message determines the extent to which the message

remains protected while making its way through its message path. Secure Sockets Layer (SSL),

for example, is a very popular means of securing the HTTP channel upon which requests and

responses are transmitted. However, within a Web services-

based communications framework, it can only protect a message during the transmission

between service endpoints. Hence, SSL only affords us transport-level security

Integrity means ensuring that a message’s contents have not changed during transmission.

Transport-level security only protects the message during transit between service endpoints.

20 | P a g e

Encryption and digital signatures

Message-level confidentiality for an XML-based messaging format, such as SOAP, can be

realized through the use of specifications that comprise the WS-Security framework. In this

section we focus on XML-Encryption and XML-Signature, two of the more important WS-

Security extensions that provide security controls that ensure the confidentiality and integrity of

a message.

XML-Encryption, an encryption technology designed for use with XML, is a cornerstone part of

the WS-Security framework. It provides features with which encryption can be applied to an

entire message or only to specific parts of the message (such as the password).

5.b) How compoentes in SOA inter-relate? Explain

1. Service reusability

 Service autonomy establishes an execution environment that facilitates reuse because the

service has independence and self-governance. The less dependencies a service has, the

broader the applicability of its reusable functionality.

 Service statelessness supports reuse because it maximizes the availability of a service and

typically promotes a generic service design that defers activity-specific processing

outside of service logic boundaries.

 Service abstraction fosters reuse because it establishes the black box concept, where

processing details are completely hidden from requestors. This allows a service to simply

express a generic public interface.

 Service discoverability promotes reuse, as it allows requestors (and those that build

requestors) to search for and discover reusable services.

2.Service contract

 Service abstraction is realized through a service contract, as it is the metadata expressed

in the contract that defines the only information made available to service requestors. All

additional design, processing, and implementation details are hidden behind this contract.

21 | P a g e

 Service loose coupling is made possible through the use of service contracts. Processing

logic from different services do not need to form tight dependencies; they simply need an

awareness of each other's communication requirements, as expressed by the service

description documents that comprise the service contract.

 Service composability is indirectly enabled through the use of service contracts. It is via

the contract that a controller service enlists and uses services that act as composition

members.

 Service discoverability is based on the use of service contracts. While some registries

provide information supplemental to that expressed through the contract, it is the service

description documents that are primarily searched for in the service discovery process.

3.Service loose coupling

 Service reusability is supported through loose coupling because services are freed from

tight dependencies on others. This increases their availability for reuse opportunities.

 Service composability is fostered by the loose coupling of services, especially when

services are dynamically composed.

 Service statelessness is directly supported through the loosely coupled communications

framework established by this

 principle.

 Service autonomy is made possible through this principle, as it is the nature of loose

coupling that minimizes cross-service dependencies.

 Additionally, service loose coupling is directly implemented through the application of a

related service-orientation principle: Service contracts are what enable loose coupling

between services, as the contract is the only piece of information required for services to

interact.

4.Service abstraction

 Service contracts, in a manner, implement service abstraction by providing the official

description information that is made public to external service requestors.

22 | P a g e

 Service reusability is supported by abstraction, as long as what is being abstracted is

actually reusable.

Service composability

 Service reusability is what enables one service to be composed by numerous others. It is

expected that reusable services can be incorporated within different compositions or

reused independently by other service requestors.

 Service loose coupling establishes a communications framework that supports the

concept of dynamic service composition.

 Because services are freed from many dependencies, they are more available to be reused

via composition.

 Service statelessness supports service composability, especially in larger compositions. A

service composition is reliant on the design quality and commonality of its collective

parts. If all services are stateless (by, for example, deferring activity-specific logic to

messages), the overall composition executes more harmoniously.

 Service autonomy held by composition members strengthens the overall composition, but

the autonomy of the controller service itself actually is decreased due to the dependencies

on its composition members.

 Service contracts enable service composition by formalizing the runtime agreement

between composition members.

6. Service autonomy

 Service reusability is more easily achieved when the service offering reusable logic has

self-governance over its own logic.

 Service Level Agreement (SLA) type requirements that come to the forefront for utility

services with multiple requestors, such as availability and scalability, are fulfilled more

easily by an autonomous service.

23 | P a g e

 Service composability is also supported by service autonomyfor much of the same

reasons autonomy supports service reusability. A service composition consisting of

autonomous services is much more robust and collectively independent.

 Service statelessness is best implemented by a service that can execute independently.

Autonomy indirectly supports service statelessness. (However, it is very easy to create a

stateful service that is also fully autonomous.)

 Service autonomy is a quality that is realized by leveraging the loosely coupled

relationship between services. Therefore service loose coupling is a primary enabler of

this principle.

7. Service statelessness

 Service autonomy provides the ability for a service to control its own execution

environment. By removing or reducing dependencies it becomes easier to build

statelessness into services, primarily because the service logic can be fully customized to

defer state management outside of the service logic boundary.

 Service loose coupling and the overall concept of loose coupling establishes a

communication paradigm that is fully realized through messaging. This, in turn, supports

service statelessness, as state information can be carried and persisted by the messages

that pass through the services.

 Service statelessness further supports the following principles:

 Service composability benefits from stateless composition members, as they reduce

dependencies and minimize the overhead of the composition as a whole.

 Service reuse becomes more of a reality for stateless services, as availability of the

service to multiple requestors is increased and the absence of activity-specific logic

promotes a generic service design.

24 | P a g e

8. Service discoverability

 Service contracts are what service requestors (or those that create them) actually discover

and subsequently assess for suitability. Therefore, the extent of a service's discoverability

can typically be associated with the quality or descriptiveness of its service contract.

 Service reusability is what requestors are looking for when searching for services and it is

what makes a service potentially useful once it has been discovered. A service that isn't

reusable would likely never need to be discovered because it would probably have been

built for a specific service requestor in the first place.

6.a) With suitable diagram explain reliable messaging model

Reliable messaging addresses these concerns by establishing a measure of quality assurance that

can be applied to other activity management frameworks

25 | P a g e

WS-ReliableMessaging provides a framework capable of guaranteeing:

• that service providers will be notified of the success or failure of message transmissions

• that messages sent with specific sequence-related rules will arrive as intended (or generate a

failure condition)

7.2.1 RM Source, RM Destination, Application Source, and Application Destination

These differentiations are necessary to abstract the reliable messaging framework from the

overall SOA. An application source is the service or application logic that sends the message to

the RM source, the physical processor or node that performs the actual wire transmission.

Similarly, the RM destination represents the target processor or node that receives the message

and subsequently delivers it to the application destination

7.2.2 Sequences

A sequence establishes the order in which messages should be delivered. Each message that is

part of a sequence is labeled with a message number that identifies the position of the message

within the sequence. The final message in a sequence is further tagged with a last message

identifier.

7.2.3 Acknowledgements

26 | P a g e

A core part of the reliable messaging framework is a notification system used to communicate

conditions from the RM destination to the RM source. Upon receipt of the message containing

the last message identifier, the RM destination issues a sequence acknowledgement (Figure 7.9).

The acknowledgement message indicates to the RM source which messages were received. It is

up to the RM source to determine if the messages received are equal to the original messages

transmitted. The RM source may retransmit any of the missing messages, depending on the

delivery assurance used

An RM source does not need to wait until the RM destination receives the last message before

receiving an acknowledgement. RM sources can request that additional acknowledgements be

transmitted at any time by issuing request acknowledgements to RM destinations (Figure 7.10).

Additionally, RM destinations have the option of transmitting negative acknowledgements that

immediately indicate to the RM source that a failure condition has occurred

7.2.4 Delivery assurances

The nature of a sequence is determined by a set of reliability rules known as delivery assurances.

Delivery assurances are predefined message delivery patterns that establish a set of reliability

policies. The following delivery assurances are supported:

27 | P a g e

 The AtMostOnce delivery assurance promises the delivery of one or zero messages. If

more than one of the same message is delivered, an error condition occurs

 The AtLeastOnce delivery assurance allows a message to be delivered once or several

times. The delivery of zero messages creates an error condition

 The ExactlyOnce delivery assurance guarantees that a message only will be delivered

once. An error is raised if zero or duplicate messages are delivered

 The InOrder delivery assurance is used to ensure that messages are delivered in a specific

sequence

The delivery of messages out of sequence triggers an error. Note that this delivery assurance can

be combined with any of the previously described assurances.

6.b) How service orientation principles relate to object orientation principles. Discuss

28 | P a g e

7.a) Explain business service models in details

Business services, on the other hand, are always an implementation of the business service

model. The sole purpose of business services intended for a separate business service layer is to

represent business logic in the purest form possible. This does not, however, prevent them from

implementing other service models. For example, a business service also can be classified as a

controller service and a utility service.

In fact, when application logic is abstracted into a separate application service layer, it is more

than likely that business services will act as controllers to compose available application services

to execute their business logic.

Business service layer abstraction leads to the creation of two further business service models:

Task-centric business service A service that encapsulates business logic specific to a task or

business process. This type of service generally is required when business process logic is not

centralized as part of an orchestration layer. Task-centric business services have limited reuse

potential.

Entity-centric business service A service that encapsulates a specific business entity (such as an

invoice or timesheet). Entity-centric services are useful for creating highly reusable and business

process-agnostic services that are composed by an orchestration layer or by a service layer

consisting of task-centric business services (or both).

b) Discuss service oriented business process redesign

29 | P a g e

Step 1: Map out interaction scenarios.

By using the following information gathered so far, we can define the message exchange

requirements of our process service:

Timesheet

Submission

Process

Invoice.GetBilledHours

Timesheet.GetAuthorizedHours

Employee.GetWeeklyHoursLimit

Employee.UpdateHistory

Notification.SendMessage

Submit

Step 2: Design the process service interface.

Now that we understand the message exchange requirements, we can proceed to define a service

definition for the process service. When working with process modeling tools, the process

service WSDL will typically be auto-generated for you. However, you should also be able to edit

the source markup code or even import your own WSDL

Either way, it is best to review the WSDL being used and revise it as necessary. Here are some

suggestions:

 Document the input and output values required for the processing of each operation, and

populate the types section with XSD schema types required to process the operations. Move

the XSD schema information to a separate file, if required.

 Build the WSDL definition by creating the portType (or interface) area, inserting the

identified operation constructs. Then, add the necessary message constructs containing the

part elements which reference the appropriate schema types. Add naming conventions that

are in alignment with those used by your other WSDL definitions.

 Add meta information via the documentation element.

 Apply other design standards within the confines of the modeling tool.

Step 3: Formalize partner service conversations.

We now begin our WS-BPEL process definition by establishing details about the services with

which our process service will be interacting.

The following steps are suggested:

1. Define the partner services that will be participating in the process and assign each the role it

will be playing within a given message exchange.

2. Add parterLinkType constructs to the end of the WSDL definitions of each partner service.

30 | P a g e

3. Create partnerLink elements for each partner service within the process definition.

4. Define variable elements to represent incoming and outgoing messages exchanged with

partner services.

Step 4: Define process logic.

Finally, everything is in place for us to complete the process definition. This step is a process in

itself, as it requires that all existing workflow intelligence be transposed and implemented via a

WS-BPEL process definition.

Step 5: Align interaction scenarios and refine process. (Optional)

This final, optional step encourages you to perform two specific tasks: revisit the original

interaction scenarios created in Step 1 and review the WS-BPEL process definition to look for

optimization opportunities.

8 a) What are the application services characteristics? Explain

Provide reusable functions related to processing data within legacy or new application

environments

Characteristics

they expose functionality within a specific processing context

they draw upon available resources within a given platform

they are solution-agnostic

they are generic and reusable

they can be used to achieve point-to-point integration with other application services

they are often inconsistent in terms of the interface granularity they expose

they may consist of a mixture of custom-developed services and third-party services that have

been purchased or leased

Utility service

When a separate business service layer exists, then turn all application services into generic

utility services

Wrapper service

Wrapper services most often are utilized for integration purposes. They consist of services that

encapsulate ("wrap") some or all parts of a legacy environment to expose legacy functionality to

service requestors

31 | P a g e

Proxy service or auto-generated WSDL

Another variation of the wrapper service model This simply provides a WSDL definition

that mirrors an existing component interface

Hybrid application services/hybrid services

Services that contain both application and business logic can be referred to as hybrid

application

services or just hybrid services. This service model is commonly found within traditional

distributed

architectures

Application integration services /Integration services

Application services that exist solely to enable integration between systems often are referred

to as application integration services or simply integration services. Integration services often

are implemented as controllers

8 b) Explain WS_BPEL language basics

WS-BPEL language basics

WS-BPEL process definition

<process>

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

<faultHandlers>

...

</faultHandlers>

<sequence>

<receive ...>

<invoke ...>

<reply ...>

...

</sequence>

...

</process>

Figure 16-1 A common WS-BPEL process definition structure.

32 | P a g e

A brief history of BPEL4WS and WS-BPEL

 The Business Process Execution Language for Web Services (BPEL4WS) was first

conceived in July, 2002 with the release of the BPEL4WS 1.0 specification, a joint effort

by IBM, Microsoft, and BEA.

 This document proposed an orchestration language inspired by previous variations, such

as IBM’s Web Services Flow Language (WSFL) and Microsoft’s XLANG specification.

 Next version of BPEL4WS is WS-BPEL Prerequisites

The process element

 BPEL processes are exposed as WSDL services †

o Message exchanges map to WSDL operations †

o WSDL can be derived from partner definitions and the role played by the process

in interaction with partners †

o BPEL processes interact with WSDL services exposed by business partners

<process name="TimesheetSubmissionProcess"

 targetNamespace="http://www.xmltc.com/tls/process/"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:bpl="http://www.xmltc.com/tls/process/"

 xmlns:emp="http://www.xmltc.com/tls/employee/"

 xmlns:inv="http://www.xmltc.com/tls/invoice/"

 xmlns:tst="http://www.xmltc.com/tls/timesheet/"

 xmlns:not="http://www.xmltc.com/tls/notification/">

 <partnerLinks>

 ...

 </partnerLinks>

 <variables>

 ...

 </variables>

 <sequence>

 ...

 </sequence>

 ...

</process>

33 | P a g e

Example 16-1 A skeleton process definition.

The process construct contains a series of common child elements

The partnerLinks and partnerLink elements

A partnerLink element establishes the port type of the service (partner) that will be participating

during the execution of the business process.

Partner services can act as a client to the process, responsible for invoking the process service.

Alternatively, partner services can be invoked by the process service itself.

The contents of a partnerLink element represent the communication exchange between two

partners – the process service being one partner and another service being the other.

<partnerLinks>

 <partnerLink name="client"

 partnerLinkType="tns:TimesheetSubmissionType"

 myRole="TimesheetSubmissionServiceProvider"/>

 <partnerLink name="Invoice"

 partnerLinkType="inv:InvoiceType"

 partnerRole="InvoiceServiceProvider"/>

 <partnerLink name="Timesheet"

 partnerLinkType="tst:TimesheetType"

 partnerRole="TimesheetServiceProvider"/>

 <partnerLink name="Employee"

 partnerLinkType="emp:EmployeeType"

 partnerRole="EmployeeServiceProvider"/>

 <partnerLink name="Notification"

 partnerLinkType="not:NotificationType"

 partnerRole="NotificationServiceProvider"/>

</partnerLinks>

Example 16-2 The partnerLinks construct containing one partnerLink element in which the

process service is invoked by an external client partner, and four partnerLink elements that

identify partner services invoked by the process service.

The partnerLinkType element

For each partner service involved in a process, partnerLinkType elements identify the WSDL

portType elements referenced by the partnerLink elements within the process definition.

34 | P a g e

The partnerLinkType construct contains one role element for each role the service can play

Therefore, a partnerLinkType will have either one or two child role elements.

<definitions name="Employee"

 targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

 ...

>

 ...

 <plnk:partnerLinkType name="EmployeeServiceType"

 xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

 <plnk:role name="EmployeeServiceProvider">

 <portType name="emp:EmployeeInterface"/>

 </plnk:role>

 </plnk:partnerLinkType>

 ...

</definitions>

Example 16-3 A WSDL definitions construct containing a partnerLinkType construct.

Note that multiple partnerLink elements can reference the same partnerLinkType. This is useful

for when a process service has the same relationship with multiple partner services. All of the

partner services can therefore use the same process service portType elements.

The variables element

Variables are used to define data containers „

 WSDL messages received from or sent to partners „

 Messages that are persisted by the process „

 XML data defining the process state

 messageType, element, or type.

35 | P a g e

 The messageType attribute allows for the variable to contain an entire WSDL-defined

message,

 Element attribute simply refers to an XSD element construct.

 The type attribute can be used to just represent an XSD simpleType, such as string or

integer.

<variables>

 <variable name="ClientSubmission"

 messageType="bpl:receiveSubmitMessage"/>

 <variable name="EmployeeHoursRequest"

 messageType="emp:getWeeklyHoursRequestMessage"/>

 <variable name="EmployeeHoursResponse"

 messageType="emp:getWeeklyHoursResponseMessage"/>

 <variable name="EmployeeHistoryRequest"

 messageType="emp:updateHistoryRequestMessage"/>

 <variable name="EmployeeHistoryResponse"

 messageType="emp:updateHistoryResponseMessage"/>

 ...

</variables>

Example 16-4 The variables construct hosting only some of the child variable elements used

later by the Timesheet Submission Process.

The getVariableProperty and getVariableData functions

getVariableProperty(variable name, property name)

 accepts the variable and property names as input and returns the requested value.

getVariableData(variable name, part name, location path)

This function is required to provide other parts of the process logic access to this data.

The getVariableData function has a mandatory variable name parameter, and two optional

arguments that can be used to specify a specific part of the variable data.

In our examples we use the getVariableData function a number of times to retrieve message data

from variables.

getVariableData(‘InvoiceHoursResponse’,‘ResponseParameter’)

getVariableData(‘input’,’payload’,‘/tns:TimesheetType/Hours/...’)

Example 16-5 Two getVariableData functions being used to retrieve specific pieces of data

from different variables.

36 | P a g e

The sequence element

The sequence construct allows you to organize a series of activities so that they are executed in a

predefined, sequential order.

WS-BPEL provides numerous activities that can be used to express the workflow logic within

the process definition.

<sequence>

 <receive>

 ...

 </receive>

 <assign>

 ...

 </assign>

 <invoke>

 ...

 </invoke>

 <reply>

 ...

 </reply>

</sequence>

Example 16-6 A skeleton sequence construct containing only some of the many activity

elements provided by WS-BPEL.

The invoke element

The invoke element is equipped with five common attributes which further specify the details of

the invocation (Table 16.1).

Attribute Description

partnerLink This element names the partner service via its

corresponding partnerLink.

portType The element used to identify the portType element of the

partner service.

operation The partner service operation to which the process

service will need to send its request.

37 | P a g e

inputVariable The input message that will be used to communicate with

the partner service operation. Note that it is referred to as

a variable because it is referencing a WS-BPEL variable

element with a messageType attribute.

outputVariable This element is used when communication is based on the

request-response MEP. The return value is stored in a

separate variable element.

Table 16-1 invoke element attributes.

<invoke name="ValidateWeeklyHours"

 partnerLink="Employee"

 portType="emp:EmployeeInterface"

 operation="GetWeeklyHoursLimit"

 inputVariable="EmployeeHoursRequest"

 outputVariable="EmployeeHoursResponse"/>

Example 16-7 The invoke element identifying the target partner service details.

The receive element

The receive element allows us to establish the information a process service expects upon

receiving a request from an external client partner service.

The receive element contains a set of attributes, each of which is assigned a value relating to the

expected incoming communication (Table 16.2).

Attribute Description

partnerLink The client partner service identified in the corresponding

partnerLink construct.

portType The partner service’s portType involved in the message

transfer.

operation The partner service’s operation that will be issuing the

request to the process service.

variable The process definition variable construct in which the

incoming request message will be stored.

createInstance When this attribute is set to “yes” the receipt of this

particular request may be responsible for creating a new

38 | P a g e

instance of the process.

Table 16-2 receive element attributes.

Note that this element can also be used to receive callback messages during an asynchronous

message exchange.

<receive name="receiveInput"

 partnerLink="client"

 portType="tns:TimesheetSubmissionInterface"

 operation="Submit"

 variable="ClientSubmission"

 createInstance="yes"/>

Example 16-8 The receive element used in the Timesheet Submission Process definition to

indicate the client partner service responsible for launching the process with the submission of

a timesheet document.

The reply element

The reply element is responsible for establishing the details of returning a response message to

the requesting client partner service.

Attribute Description

partnerLink The same partnerLink element established in the receive

element.

portType The same portType element displayed in the receive

element.

operation The same operation element from the receive element.

variable The process service variable element that holds the

message that is returned to the partner service.

messageExchange It is being proposed that this optional attribute be added

by the WS-BPEL 2.0 specification. It allows for the reply

element to be explicitly associated with a message

activity capable of receiving a message (such as the

receive element).

Table 16-3 reply element attributes.

<reply partnerLink="client"

39 | P a g e

 portType="TimeSubmissionProcessInterface"

 operation="SubmitTimesheet"

 variable="TimesheetSubmissionResponse"/>

Example 16-9 A potential companion reply element to the previously displayed receive

element.

The switch, case, and otherwise elements

The switch element establishes the scope of the conditional logic

multiple case constructs can be nested to check for various conditions using a condition attribute.

condition attribute resolves to “true,” the activities defined within the corresponding case

construct are executed.

The otherwise element can be added as a catch all at the end of the switch construct.

Should all preceding case conditions fail, the activities within the otherwise construct are

executed.

<switch>

 <case

condition="getVariableData(‘EmployeeResponseMessage’,‘ResponseParameter’)=0">

 ...

 </case>

 <otherwise>

 ...

 </otherwise>

</switch>

Example 16-10 A skeleton case element wherein the condition attribute uses the

getVariableData function to compare the content of the EmployeeResponseMessage variable

to a zero value.

Note: It has been proposed that the switch, case, and otherwise elements be replaced with if,

elseif, and else elements in WS-BPEL 2.0.

The assign, copy, from, and to elements

This set of elements simply gives us the ability to copy values between process variables

<assign>

 <copy>

 <from variable="TimesheetSubmissionFailedMessage"/>

40 | P a g e

 <to variable="EmployeeNotificationMessage"/>

 </copy>

 <copy>

 <from variable="TimesheetSubmissionFailedMessage"/>

 <to variable="ManagerNotificationMessage"/>

 </copy>

</assign>

Example 16-11 Within this assign construct, the contents of the

TimesheetSubmissionFailedMessage variable are copied to two different message variables.

Note that the copy construct can process a variety of data transfer functions

from and to elements can contain optional part and query attributes that allow for specific parts

or values of the variable to be referenced.

faultHandlers, catch, and catchAll elements

This construct can contain multiple catch elements, each of which provides activities that

perform exception handling for a specific type of error condition.

Faults can be generated by the receipt of a WSDL-defined fault message, or they can be

explicitly triggered through the use of the throw element.

The faultHandlers construct can consist of (or end with) a catchAll element to house default error

handling activities.

Module – 5

9 a) What are architectural considerations. Explain

2. Non functional requirements

 Performance

41 | P a g e

 Scalability

 Availability

 Reliability

 Security

9 b) Explain packaged application platform

1. Enterprise Resource Planning : Enterprise resource planning or ERP software is a suite

of applications that manages core business processes, such as sales, purchasing,

accounting, Human Resource, customer support, CRM and inventory. It’s an integrated

system as opposed to individual software designed specifically for business process.

2. Supply chain Management : SCM encompasses the integrated planning and execution of

processes required to optimize the flow of materials, information and financial capital in

the areas that broadly include demand planning, sourcing, production, inventory

management and storage, transportation -- or logistics -- and return for excess or

defective products. Both business strategy and specialized software are used in these

endeavors to create a competitive advantage. Supply chain management is an expansive,

complex undertaking that relies on each partner -- from suppliers to manufacturers and

https://searcherp.techtarget.com/definition/demand-planning
https://searcherp.techtarget.com/definition/inventory-management
https://searcherp.techtarget.com/definition/inventory-management
https://searcherp.techtarget.com/definition/logistics-management

42 | P a g e

beyond -- to run well. Because of this, effective supply chain management also requires

change management, collaboration and risk managementto create alignment and

communication between all the entities

3. Customer Relationship management

Customer relationship management (CRM) is a term that refers to practices, strategies and

technologies that companies use to manage and analyze customer interactions and data

throughout the customer lifecycle, with the goal of improving customer service relationships and

assisting in customer retention and driving sales growth.

10 a) Discuss architectural elaboration process

https://whatis.techtarget.com/definition/supply-chain-risk-management-SCRM
https://searchsalesforce.techtarget.com/definition/Customer-Life-Cycle

43 | P a g e

44 | P a g e

10 b) Explain the principles in application server platform

45 | P a g e

