

CMR

INSTITUTE OF

TECHNOLOGY

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 1 – September 2018

Dr. Vakula Rani

 Answer any five of the following 100 Marks

Q1(a) Which are the different ways to compute GCD of two numbers ? Write any two algorithms to find it and

apply for the given input m=6 , n=10

Def : An algorithm is a sequence of unambiguous instructions for solving a problem. i.e., for obtaining a

required output for any legitimate input in a finite amount of time.

 Figure : Notion of the Algorithm

Method -1

Below is given the psuedocode of the algorithm

Euclid’s algorithm to find the GCD of two numbers is based on applying repeatedly the equality

gcd(m, n) = gcd(n, m mod n), where m>n

where m mod n is the remainder of the division of m by n, until m mod n is equal to 0. Since gcd(m, 0) = m ,

the last value of m is also the greatest commondivisor of the initial m and n.

For example, gcd(6, 10) can be computed as follows:

m<n hence swap the values of m and n

gcd(10,6) = gcd(6, 4) = gcd(4, 2) =gcd(2,0) = 2

Euclid’s algorithm for computing gcd(m, n)

Step 1 If n = 0, return the value of m as the answer and stop; otherwise,

proceed to Step 2.

Step 2 Divide m by n and assign the value of the remainder to r.

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

ALGORITHM Euclid(m, n)

//Computes gcd(m, n) by Euclid’s algorithm

//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n _= 0 do

r ←m mod n

m←n

n←r

return m

Sub: Design and Analysis of Algorithms Code: 17MCA33

Date: 14-12-2018 Duration: 3hrs Max Marks: 100 Sem: III Sem Branch: MCA

Method -2

Middle-school procedure for computing gcd(m, n)

Step 1 Find the prime factors of m.

Step 2 Find the prime factors of n.

Step 3 Identify all the common factors in the two prime expansions found in

Step 1 and Step 2. (If p is a common factor occurring pm and pn times in m and n, respectively, it should be

repeated min{pm, pn } times.)

Step 4 Compute the product of all the common factors and return it as the

greatest common divisor of the numbers given.

Thus, for the numbers 6 and 10,

we get

6 = 2 * 3

10 = 2 * 5

gcd(6, 10) = 2

Q 1 (b) With a neat flow chart , explain the fundamentals of algorithmic problem Solving

Fig : Algorithm Design and Analysis Process

1. Understanding the problem:
Before designing algorithm, one should understand the problem correctly. This may require the
problem to be read multiple times, asking questions if required and working out smaller instances
of problem by hand. Any input to an algorithm specifies an instance or event of the problem. So,
it is very important to set the range of inputs so that the algorithm works for all legitimate inputs
i.e work correctly under all circumstances..

2. Ascertaining the capabilities of a computational Device:
After understanding the problem, one must think of the machines that execute instructions. The
machines that are capable of executing the instructions one after the other is known as sequential
machines and algorithms which run on these machines are known as sequential algorithms
 Newer machines can run instructions concurrently re known as parallel machines and
algorithms which have written for such machines are called parallel algorithms.
If we are dealing with the small problems, we need not worry about the time and memory
requirements. But some complex problems which involve processing large amounts of data in real
time are required to know about the time and memory requirements where the program is to be
executed on the machine.
3. Choosing between exact and approximate problem solving:

The algorithms which solves the problem and gives the exact solution is known as Exact
Algorithm and one which gives approximate results is known as Approximation Algorithms.

 There are two situations in which we may have to go for approximate solution:
i) If the quantity to be computed cannot be calculated exactly. For example finding

square roots, solving non linear equations etc.
ii) Complex algorithms may have solutions which take an unreasonably long amount of

time if solved exactly. In such a case we may opt for going for a fast but approximate
solution.

4. Deciding on data structures:
Algorithms use different data structures for their implementation. Some use simple ones but
some other may require complex ones. But, Data structures play a vital role in designing and
analyzing the algorithms.

5. Algorithm Design Techniques:
 An algorithm design technique is a general approach to solving problems

algorithmically that is applicable to a variety of problems from different areas of
computing. These techniques will provide guidance in designing algorithms for
new problems. Various design methods for algorithms exist, some of which are –
divide and conquer, dynamic programming, greedy algorithms etc.

6. Methods of specifying an Algorithm:
Algorithm can be specified using natural language and psuedocode. Due to the inherent
ambiguity of the natural language, the most prevelant method of specifying an algorithm is
using psuedocode.

7. Proving an Algorithm’s correctness:
Correctness has to be proved for every algorithm. To prove that the algorithm gives the required
result for every legitimate input in a finite amount of time. For some algorithms, a proof of
correctness is quite easy; for others it can be quite complex. Mathematical Induction is normally
used for proving algorithm correctness.
8. Analyzing an algorithm:
Any Algorithm must be analysed for its efficiency time and space . Time efficiency indicates how
fast the algorithm runs; space efficiency indicates how much extra memory the algorithm needs.
Another desirable characteristic is simplicity. A code which is simple reduces the effort in
understanding and writing it and thus leads to less chances of error. Another desirable
characteristic is generality. An algorithm can be general if it addresses a more general form of the
problem for which the algorithm is to be designed and is able to handle all legitimate inputs.
9. Coding an algorithm:
Programming the algorithm by using some programming language. Formal verification by proof
is done for small programs. Validity of large and complex programs is done through testing and
debugging.

(2)(a)List out important problem types. Explain any two of them .

The different problem types are :
1. Sorting
2. Searching
3. String processing
4. Graph problems
5. Combinatorial problems
6. Geometric problems
7. Numerical problems.
1. Sorting:
Sorting problem is one which rearranges the items of a given list in ascending order. When sorting a
record the field on which the sorting is performed is called a key. There are different types of sorting
algorithms. There are some algorithms that sort an arbitrary of size n using nlog2n comparisons, On
the other hand, no algorithm that sorts by key comparisons can do better than that. Algorithms for
sorting vary from each other in their simplicity and efficiency. Although some algorithms are better
than others, there is no algorithm that would be the best in all situations.
In addition there are two more desirable properties that a sorting algorithm may possess. The first is
called stable, if it preserves the relative order of any two equal elements in its input. The second is
said to be ‘in place’ if it does not require extra memory.
2. Searching:
The searching problem deals with finding a given value, called a search key, in a given set. The
searching can be either linear search or binary search algorithm. These algorithms play a important
role in real-life applications because they are used for storing and retrieving information from large
databases. Searching, mainly deals with addition and deletion of records. In such cases, the data
structures and algorithms are chosen to balance among the required set of operations.
3.String processing:
A String is a sequence of characters. Most common examples are text strings, which consists of letters,
numbers and special characters. Bit strings consist of zeroes and ones. The most important problem is
the string matching, which is used for searching a given word in a text. For e.g. Boyer-Moore
algorithm and brute- force string matching algorithms.
4. Graph problems:
A graph is a collection of points called vertices which are connected by line segments called edges.
Graphs are used for modeling a wide variety of real-life applications such as transportation and
communication networks.
Graph problems include graph traversal, shortest-path and topological sorting algorithms. Some
graph problems are very hard, only very small instances of the problems can be solved in realistic
amount of time even with fastest computers such as traveling salesman problem, for finding the
shortest tour through n cities that visits every city exactly once and the graph-coloring problem for
assigning the smallest number of colors to vertices of a graph so that no two adjacent vertices are of
the same color.
5.Combinatorial problems:
These are problems that ask us to find a combinatorial object such as permutation, combination or a
subset that satisfies certain constraints and may have some desired properties (e.g. maximizes a value
or minimizes a cost). E.g. TSP and finding subsets of a set. Most of these problems have algorithm
which have a complexity having very high rate of growth and for most of them no efficient algorithm
has been devised till date.
6.Geometric problems:
Geometric algorithms deal with geometric objects such as points, lines and polygons. triangles, circles
etc. The applications for these algorithms are in computer graphic, robotics etc. E.g. closest-pair

problem, given ‘n’ points in the plane, find the closest pair among them and convex-hull problem to
find the smallest convex polygon that would include all the points of a given set.
7.Numerical problems:

These problems involve mathematical objects of continuous nature: solving equations computing
definite integrals and evaluating functions and so on. These problems can be

solved only approximately because of limited precision that can be offered by machine and can also
lead to an accumulation of round-off errors. The algorithms designed are mainly used in scientific
and engineering applications.

Q2.(b) What is asymptotic notation. List and Explain any two of them .

Asymptotic notations are the mathematical notations to express time and space complexity. It represents the

runnning time of an algorithm.

Different Notations

1. Big oh Notation

2. Omega Notation

3. Theta Notation

1. Big oh (O) Notation : A function t(n) is said to be in O[g(n)], t(n) ∈ O[g(n)] , if t(n) is bounded above by some

constant multiple of g(n) for all large n ie.., there exist some positive constant c and some non negative integer no

such that t(n) ≤ cg(n) for all n≥no.

 Eg. t(n)=100n+5 express in O notation

 100n+5 < = 100n + n for all n>=5

 < = 101 (n2)

 Let g(n)= n2 ; n0=5 ; c = 101

 i.e 100n+5 <=101 n2

 t(n) <= c* g(n) for all n>=5

There fore , t(n) ∈ O(n2)

2. Omega(Ω) -Notation:

Definition: A function t(n) is said to be in Ω[g(n)], denoted t(n) ∈ Ω[g(n)] , if t(n) is bounded below by some positive

constant multiple of g(n) for all large n, ie., there exist some positive constant c and some non negative integer n0 such

that

 t(n) ≥ cg(n) for all n ≥ n0.

For example:

 t(n) = n3 ∈ Ω(n2),

 n3 ≥ n2 for all n ≥ n0.

 we can select, g(n)= n3 , c=1 and n0=0

 t(n) ∈ Ω(n2),

3. Theta (θ) - Notation:

Definition: A function t(n) is said to be in θ [g(n)], denoted t(n) ∈ θ (g(n)), if t(n) is bounded both above and below by

some positive constant multiples of g(n) for all large n , ie., if there exist some positive constant c1 and c2 and some

nonnegative integer n0 such that c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥ n0.

For example 1:

 t(n)=100n+5 express in θ notation

 100n <= 100n+5 <= 105n for all n>=1

 c1=100; c2=105; g(n) = n;

 Therefore , t(n) ∈ θ (n)

Q3.(a) Write an algorithm to sort given n elements using bubble sort and find its time complexity.

 Sol :

The algorithm for bubble sort is as follows:

Analysis:
The no of key comparisons is the same for all arrays of size n, it is obtained by a sum which is similar
to selection sort.

The no.of key swaps depends on the input. The worst case is same as the no.of key comparisons.

Q.3(b) Write algorithm for the brute force string matching process and Apply the same for the given input

Text String = { NOBODY-NOTICED-HIM }

Pattern String ={ NOT }

Solution

N O B O D Y _ N O T I C E D _ H I M

N O T

 N O T

 N O T

 N O T

 N O T

 N O T

 N O T

 N O T

String is matched return the starting Index -8

N O B O D Y _ N O T I C E D _ H I M

 N O T

The time complexity would be analyzed by finding the number of times the basic operation j=j+1 is executed.

The inner loop will be executed a maximum of m times (j=0 to m-1).

 Therefore

T(n)= = (n-m)*m = θ(mn).

Where m is the length of pattern and n is the length of text.

Q 4.(a) Write an algorithm to n elements using Merge sort. Apply the same to sort the given list { E, L , E , M ,E ,

N , T , S } in alphabetical ordering.

Mergesort is a perfect example of a successful application of the divide-and conquer technique. It sorts a given array

A[0..n − 1] by dividing it into two halves A[0.._n/2_ − 1] and A[_n/2_..n − 1], sorting each of them recursively, and then

merging the two smaller sorted arrays into a single sorted one. The pseudocode for Merge sort is as follows:

Algorithm merge(arr,l,mid, u)

Create a temporary array C[0..u]

i<-- l

j <-- mid+1

k <-- l // index into temporary array

while i <=mid and j <=u

if arr[i] <= arr[j]

C[k] <-- arr[i]

i <-- i+1

else

C[k] <-- arr[j]

j <-- j+1

k <-- k+1

//copying rest of elements from first subarray

 while i<=mid

C[k] <-- arr[i]

i <-- i+1

k <-- k+1

//copying rest of elements from second subarray

while j<=u

C[k] <-- arr[j]

j <-- j+1

k <-- k+1

for i in l to u // copying all elements from temp array to original array

arr[i] <-- C[i]

Algorithm mergesort(arr,l,u)

// only do it if the array contains atleast 2 elements

 if (l < u)

 mid = (l+u)/2

mergesort(A,l,mid)

mergesort(A,mid+1,u)

Merge(A,l,mid,u)

Analysis

We first analyze the merge function used for mergesort. We notice that to merge an array with n elements at every step(in

the first three loops) an element is always copied to the temporary array C. Since there are n elements to be copied the

number of operations in the first three loops is n. Similarly in the last loop when the elements are copied from temporary

array to the original array (arr) there are again “n” copies. Thus the total number of copy operations in the algorithm

merge is O(n).

Analyzing the mergesort algorithm we find that each call involves two recursive calls to mergesort with the problem size

half and a call to merge which takes O(n) time . Thus the recurrence can be wtitten as:

T(n) = 2 T(n/2)+cn.

Applying the master’s method,

 a=2, b=2 and d=1.

 Thus a=bd and thus case 2 of Master’s method applies.

Thus T(n) = O(nlgn).

Q 4(b) Write an algorithm for binary search and analyze its time complexity

This search algorithm works on the principle of divide and conquer. For this algorithm, the data should be in the sorted

order. Binary search stars comparing the middle element with the key value. If it matches, then the index of item is

returned. If the middle item is greater than the item, then the item is searched in the sub-array to the left of the middle

item. Otherwise, the item is searched for in the sub-array to the right of the middle item. This process continues on the

sub-array as well until the size of the subarray reduces to zero.

Algorithm binsearch(A[0..n-1],key,l,u)

Begin

 If l>u

 Return -1

 While (l <=u)

 Mid  (l+u)/2

 If A[mid] = key

 Return mid

 Else if A[mid] < key

 Return binsearch(A, l,mid-1)

 Else

 Return binsearch(A,mid+1,u)

end

Thus the recurrence would be C(n) = C(n/2)+1 , n>1 and C(1) = 0

The problem size at each step reduces by half each time. The additional amount in computing the mid element and

comparison with the key is constant time operation and thus the 1 in the above expression.

Using master’s method, we find a=1 , b=2 and d=0. The a=bd and thus it is the second case.

Hence C(n) = O(lgn)

Q5(b) Obtain the topological ordering for the following graph using source removal method.

For a Directed Acyclic Graph we can list its vertices in such an order that; for every edge in the graph,
the vertex where the edge starts is listed before the vertex where the edge ends. This problem is
called topological sorting. Topological sorting can be used to solve real world problems such as task
scheduling where there is a dependency of a task on other tasks to be performed. Topological sorting
is different from other sorting algorithms because the elements have a partial order and not a total
order and thus the order of vertices arranged in topological order is not unique.
Topological sorting can be done in two ways:

1. Source Removal
2. Modified DFS.

Source Removal Method: In the source removal method at every step repeatedly, identify in a
remaining digraph a source, which is a vertex with no incoming edges, and delete it along with all the
edges outgoing from it. The order in which the vertices are deleted yields a solution to the topological
sorting problem. The following figure illustrates this method:

The algorithm for the same is given by:

Algorithm TopologicalSort(G,n)
 // G is a digraph G=(V,E), n is the number of vertices
 // create a array 'visit' to store if vertex is visited or not
 // array indeg stores the indegree of all vertices, to keep
 // track of vertices which can be removed from graph
 for u in V
 visit[u] <-- 0 // set it to not visited
 indeg[u] <-- 0
 for each vertex v which has an edge directed to u
 indeg[u] <-- indeg[u] +1

 // since all vertices must be printed exactly once -
 // the loop goes on n times
 for i <-- 1 to n
 v <-- -1 // after the loop that follows v will be the
 // vertex whose indegree is 0
 for u in V
 if indeg[u] = 0
 v <-- u
 break
 if v = -1
 print "Topological sort not possible, cycle in digraph"
 break

visit[v] <-- 1
 print "Visiting vertex " , v
 for all vertices u adjacent to v
 indeg[u] <-- indeg[u] -1 // removing v from graph
Modified DFS: Perform a DFS traversal and note the order in which vertices become dead-ends (i.e.,
popped off the traversal stack). Reversing this order yields a solution to the topological sorting
problem, provided, of course, no back edge has been encountered during
the traversal. If a back edge has been encountered, the digraph is not a dag, and topological sorting of
its vertices is impossible. The figure below illustrates this method:

Q6(a) Find the MST for the given graph using Kruskal’s algorithm

Kruskal’s algorithm is used for solving the minimal spanning tree problem. Spanning tree of an undirected

connected graph is its connected acyclic subgraph(tree) that contains all the vertices of the graph. If such a

graph has weights assigned to its edges, a minimum spanning tree is its spanning tree of the smallest weight,

where the weight of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree

problem is the problem of finding a minimum spanning tree for a given weighted connected graph.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph G = (V, E) as an acyclic

subgraph with |V| − 1 edges for which the sum of the edge weights is the smallest. Consequently, the algorithm

constructs a minimum spanning tree as an expanding sequence of subgraphs that are always acyclic but are not

necessarily connected on the intermediate stages

Q6(b) Write an algorithm to find single source shortest path using Dijkstra’s algorithms

Explain the Dijkstra’s single source shortest path algorithms and analyze its time complexity.

Sol: Dijkstra’s algorithm is an algorithm for solving the single-source shortest-paths problem: for a given vertex

called the source in a weighted connected graph with non negative edges, find shortest paths to all its other

vertices. Some of the applications of the problem are transportation planning, packet routing in communication

networks finding shortest paths in social networks, etc. First, it finds the shortest path from the source. to a

vertex nearest to it, then to a second nearest, and so on. In general, before its ith iteration starts, the algorithm

has already identified the shortest paths to i − 1 other vertices nearest to the source. These vertices, the source,

and the edges of the shortest paths leading to them from the source form a subtree Ti of the given graph. The set

of vertices adjacent to the vertices in T called “fringe vertices”; are the candidates from which Dijkstra’s

algorithm selects the next vertex nearest to the source. To identify the ith nearest vertex, the algorithm

computes, for every fringe vertex u, the sum of the distance to the nearest tree vertex v and the length dv of the

shortest path from the source to v and then selects the vertex with the smallest such d value. d indicates the

length of the shortest path from the source to that vertex till that point. We also associate a value p with each

vertex which indicates the name of the next-to-last vertex on such a path, . After we have identified a vertex u*

to be added to the tree, we need to perform two operations.

The psuedocode for Dijkstra’s is as given below:

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data structures used for implementing the priority

queue and for representing an input graph itself.

Graph represented by adjacency matrix and priority queue by array:

In loop for initialization takes time |V| since the insertion into the queue would just involve appending the

vertices at the end(since it is an array implementation). For the second loop, the loop runs |V| times. Each time

the DeleteMin operation would take a maximum of θ(|V|) time since it would involve finding the vertex in the

array with min d value, for a total time of |V|2. The for loop (for iupdating the neighbor vetices) would run |V|

times again. However the Decrease would take θ(1) time because the index of the vertex would be known.

Thus the total time complexity is θ(|V|2).

Graph represented by adjacency list and priority queue by binary heap:

All heap operations take θ(lg|V|) time. Thus the first loop runs |V| times and each time the Insert would take

θ(lg|V|) time. The second loop runs |V| times and the DeleteMin would again take lg|V| time. Thus the total

number of time DecreaseMin would run across all iterations is θ(Vlg|V|). In the second loop the basic operation

is Decrease(Q,u,du) whoch is run the maximum number of times. Across all iterations using adjacency list,

since for each vertex Decrease is called for a maximum of all its adjacent vertices, the number of times

Decrease is invoked |E| times. For each time it is onvoked , it takes O(lg|V|) time to execute. Thus the total time

complexity is θ((|E|+|V|)lg|V|).

Graph represented by adjacency list and priority queue by fibonacci heap:

The time taken in this case θ(|E|+|V|lg|V|).

Q6(c) Find the Huffman code for the following data by obtaining Huffman tree .

Q 7 (a) Write an algorithm to compute transitive closure/ path matrix for the given graph and obtain the transitive

closure for the given graph :

Q 7(b) Find the optimal solution for the given Knapsack instance using 0/1 Knapsack method with capacity M=5

Item 1 2 3 4

Weight 2 1 3 2

Value/Profit 12 10 20 15

knapsack problem: given n items of known weights w1, . . . , wn and values v1, . . . , vn and a knapsack of

capacity W, find the most valuable subset of the items that fit into the knapsack

Consider an instance defined by the first i items, 1≤ i ≤ n, with weights w1, . . . , wi, values v1, . . . , vi , and

knapsack capacity j, 1 ≤ j ≤ W. Let F(i, j) be the value of an optimal solution to this instance, i.e., the value of

the most valuable subset of the first i items that fit into the knapsack of capacity j.We can divide all the subsets

of the first i items that fit the knapsack of capacity j into two categories: those that do not include the ith

item and those that do. Note the following:

1. Among the subsets that do not include the ith item, the value of an optimal subset is, by definition, F(i − 1, j).

2. Among the subsets that do include the ith item (hence, j – wi ≥ 0), an optimal subset is made up of this item

and an optimal subset of the first i − 1 items that fits into the knapsack of capacity j − wi . The value of such an

optimal subset is vi + F(i − 1, j − wi).

Thus, the value of an optimal solution among all feasible subsets of the first i items is the maximum of these

two values. Of course, if the ith item does not fit into the knapsack, the value of an optimal subset selected

from the first i items is the same as the value of an optimal subset selected from the first i − 1 items.

These observations lead to the following recurrence:

F(i, j) = max{F(i − 1, j), vi + F(i − 1, j − wi)} if j – wi ≥ 0,

 F(i − 1, j) if j − wi < 0

It is convenient to define the initial conditions as follows:

F(0, j) = 0 for j ≥ 0 and F(i, 0) = 0 for i ≥ 0.

The goal is to find F(n, W), the maximal value of a subset of the n given items that fit into the knapsack of

capacity W, and an optimal subset itself.

Thus, the maximal value is F(4, 5) = $37. We can find the composition of an optimal subset by backtracing the

computations of this entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution

along with an optimal subset for filling 5 − 2 = 3 remaining units of the knapsack capacity. The value of the

latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal subset. Since F(2, 3) > F(1, 3), item 2

is a part of an optimal selection, which leaves element F(1, 3 − 1) to specify its remaining composition.

Similarly,since F(1, 2) > F(0, 2), item 1 is the final part of the optimal solution {item 1, item 2, item 4}.

8(a) Write an algorithm to sort given elements using counting method. Apply the same for the following input

{ 13,11,12,13,12,12}

Note that the distribution values indicate the proper positions for the last occurrences
of their elements in the final sorted array. If we index array positions from 0
to n − 1, the distribution values must be reduced by 1 to get corresponding element
positions.
It is more convenient to process the input array right to left. For the example,
the last element is 12, and, since its distribution value is 4, we place this 12 in
position 4 − 1= 3 of the array S that will hold the sorted list. Then we decrease
the 12’s distribution value by 1 and proceed to the next (from the right) element
in the given array.

Assuming that the range of array values is fixed, this is obviously a linear
algorithm because it makes just two consecutive passes through its input array
A. This is a better time-efficiency class than that of the most efficient sorting
algorithms—mergesort, quicksort, and heapsort—we have encountered

Q8(b) Explain the Horspool’s string matching algorithm with a suitable example

Sol :

 Horspool's algorithm is used for string matching and performs better than the brute force string matching by

attempting the largest possible shift after every mismatch. this however, is done at the cost of extra storage

which is a shift table maintained. While matching a string with the pattern the following four cases occur

To search for the pattern DEMO in the text THIS IS A DEMO FOR STRING MATCHING, we first find the

shift table for DEMO

Here n(length of string)=34 and m=4

Calculating the shift only for the first 3 characters:

Shift for D = m – 1 – I = 4-1-0=3

Shift for E = 4-1-1=2

Shift for M = 4-1-2=1

For all characters the shift table will have entries 4.

Q9.(a) What is Decision Tree ? Obtain the decision tree to find minimum of 3 numbers.

Decision tree of an algorithm for finding a minimum of three numbers. Each internal node of a binary

decision tree represents a key comparison indicated in the node, e.g., k < k'.The node’s left subtree

contains the information about subsequent comparisons made if , k < k', and its right subtree does the same

for the case of k > k'. (For the sake of simplicity, we assume throughout this section that all input items are

distinct.) Each leaf represents a possible outcome of the algorithm’s run on some input of size n. Note that
the number of leaves can be greater than the number of outcomes because, for some algorithms, the same
outcome can be arrived at through a different chain of comparisons. The algorithm’s work on a particular
input of size n can be traced by a path from the root to a leaf in its decision tree, and the number of
comparisons made by the algorithm on such a run is equal to the length of this path. Hence, the number of
comparisons in the worst case is equal to the height of the algorithm’s decision tree. The central idea behind
this model lies in the observation that a tree with a given number of leaves, which is dictated by the number
of possible outcomes, hasto be tall enough to have that many leaves. We use the lemma that for any binary
tree with l leaves and height h, h ≥ log2 l. Indeed, a binary tree of height h with the largest number of leaves
has all its leaves on the last level. Hence, the largest number of leaves in such a tree is 2h. In other words, 2h ≥
l, which immediately implies, h ≥ log2 l.

Q9.(b) Explain N-Queens problem using Back Tracking.

N Queen's problem:
The n-queens problem. is to place n queens on an n × n chessboard so that no two queens
attack each other by being in the same row or in the same column or on the same diagonal.
To solve this using backtracing we use the following strategy. Consider the 4 Queens
problem:
We start with the empty board and then place queen 1 in the first possible position of its
row, which is in column 1 of row 1. Then we place queen 2, after trying unsuccessfully
columns 1 and 2, in the first acceptable position for it, which is square (2, 3), the square in
row 2 and column 3. This proves to be a dead end because there is no acceptable position
for queen 3. So, the algorithm backtracks and puts queen 2 in the next possible position at
(2, 4). Then queen 3 is placed at (3, 2), which proves to be another dead end. The algorithm
then backtracks all the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4),
queen 3 to (3, 1), and queen 4 to (4, 3), which is a solution to the problem.
The state space tree is shown below:

Q10(a) Construct the state –space tree for the Sum of subsets problem for the given data W = { 5,10,12,13,15,18}

and M = 30

 Q10 (b) Find the optimal solution for the given assignment problem which is represented aqs the

matrix as shown below:

.

Sol:
 Problem Statement : There are n people who need to be assigned to execute n jobs, one person per

job. (That is, each person is assigned to exactly one job and each job is assigned to exactly one

person.) The cost that would accrue if the ith person is assigned to the jth job is a known quantity C[i,

j] for each pair i, j = 1, 2, . . . , n. The problem is to find an assignment with the minimum total cost.

Best solution : a->2, b->1 c->3,d->4 Min Cost = 13

