
CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

MODILE-1
1. a Describe software engineering code of ethics and

professional practice as defined by IEEE/ACM (8)
Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession.
In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the
following Eight Principles:
1. Public: Software engineers shall act consistently with the
public interest.
2. Client and Employer: Software engineers shall act in a
manner that is in the best interests of their client and employer
consistent with the public interest.
3. Product: Software engineers shall ensure that their products
and related modifications meet the highest professional
standards possible.
4. Judgment: Software engineers shall maintain integrity and
independence in their professional judgment.
5. Management: Software engineering managers and leaders
shall subscribe to and promote an ethical approach to the
management of software development and maintenance.
6. Profession: Software engineers shall advance the integrity
and reputation of the profession consistent with the public
interest.
7. Colleagues: Software engineers shall be fair to and supportive
of their colleagues.
8. Self: Software engineers shall participate in lifelong learning
regarding the practice of their profession and shall promote an
ethical approach to the practice of the profession.

1. b Why software engineering is important? Explain the
attributes of good software. (8)

Software engineering is an engineering discipline that is
concerned with all aspects of software production from the early
stages of system specification through to maintaining the system
after it has gone into use.
Software engineering is important for two reasons:
(i) More and more, individuals and society rely on advanced
software systems. We need to be able to produce reliable and
trustworthy systems economically and quickly.
(ii) It is usually cheaper, in the long run, to use software
engineering methods and techniques for software systems rather
than just write the programs as if it was a personal programming
project. For most types of systems, the majority of costs are the
costs of changing the software after it has gone into use.
Essential attributes of good software:
(i) Maintainability: Software should be written in such a way so
that it can evolve to meet the changing needs of customers. This
is a critical attribute because software change is an inevitable
requirement of a changing business environment.
(ii) Dependability and security: Software dependability
includes a range of characteristics including reliability, security,
and safety. Dependable software should not cause physical or
economic damage in the event of system failure. Malicious users
should not be able to access or damage the system.
(iii) Efficiency: Software should not make wasteful use of
system resources such as memory and processor cycles.
Efficiency therefore includes responsiveness, processing time,
memory utilization, etc.
(iv) Acceptability: Software must be acceptable to the type of
users for which it is designed. This means that it must be

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

understandable, usable, and compatible with other systems that
they use.

OR

2. a Explain the phases in Rational Unified Process (8)

The Rational Unified Process (RUP) (Krutchen, 2003) is an
example of a modern process model that has been derived from
work on the UML and the associated Unified Software
Development Process. The RUP recognizes that conventional
process models present a single view of the process. In contrast,
the RUP is normally described from three perspectives:
1. A dynamic perspective: which shows the phases of the model
over time.
2. A static perspective: which shows the process activities that
are enacted.
3. A practice perspective: which suggests good practices to be
used during the process.

The RUP is a phased model that identifies four discrete phases
in the software process.
1. Inception: The goal of the inception phase is to establish a
business case for the system. You should identify all external
entities (people and systems) that will interact with the system
and define these interactions. You then use this information to
assess the contribution that the system makes to the business. If

this contribution is minor, then the project may be cancelled
after this phase.
2. Elaboration: The goals of the elaboration phase are to
develop an understanding of the problem domain, establish an
architectural framework for the system, develop the project plan,
and identify key project risks. On completion of this phase you
should have a requirements model for the system, which may be
a set of UML use-cases, an architectural description, and a
development plan for the software.
3. Construction: The construction phase involves system
design, programming, and testing. Parts of the system are
developed in parallel and integrated during this phase. On
completion of this phase, you should have a working software
system and associated documentation that is ready for delivery
to users.
4. Transition: The final phase of the RUP is concerned with
moving the system from the development community to the user
community and making it work in a real environment. This is
something that is ignored in most software process models but
is, in fact, an expensive and sometimes problematic activity. On
completion of this phase, you should have a documented
software system that is working correctly in its operational
environment.

2. b List and explain the Extreme Programming

practices. (8)
Extreme programming (XP) is perhaps the best known and most
widely used of the agile methods. In extreme programming,
requirements are expressed as scenarios (called user stories),
which are implemented directly as a series of tasks.
Programmers work in pairs and develop tests for each task

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

before writing the code. All tests must be successfully executed
when new code is integrated into the system. There is a short
time gap between releases of the system. The XP process to
produce an increment of the system that is being developed.

Extreme programming involves a number of practices, which
reflect the principles of agile methods:
1. Incremental development is supported through small, frequent
releases of the system. Requirements are based on simple
customer stories or scenarios that are used as a basis for deciding
what functionality should be included in a system increment.
2. Customer involvement is supported through the continuous
engagement of the customer in the development team. The
customer representative takes part in the development and is
responsible for defining acceptance tests for the system.
3. People, not process, are supported through pair programming,
collective ownership of the system code, and a sustainable
development process that does not involve excessively long
working hours.
4. Change is embraced through regular system releases to
customers, test-first development, refactoring to avoid code
degeneration, and continuous integration of new functionality.

5. Maintaining simplicity is supported by constant refactoring
that improves code quality and by using simple designs that do
not unnecessarily anticipate future changes to the system.
1. Incremental

planning
Requirements are recorded on
Story Cards and the Stories to be
included in a release are
determined by the time available
and their relative priority.
The developers break these Stories
into development ‘Tasks’.

2. Small releases The minimal useful set of
functionality that provides business
value is developed first.
Releases of the system are frequent
and incrementally add functionality
to the first release.

3. Simple design Enough design is carried out to
meet the current requirements.

4. Test-first
development

An automated unit test framework
is used to write tests for a new piece
of functionality before that
functionality itself is implemented.

5. Refactoring All developers are expected to
refactor the code continuously as
soon as possible code
improvements are found to keep
the code simple and maintainable.

6. Pair programming Developers work in pairs, checking
each other’s work and providing
the support to always do a good job.

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

7. Collective
ownership

The pairs of developers work on all
areas of the system, so that no
islands of expertise develop and all
the developers take responsibility
for all of the code.
Anyone can change anything.

8. Continuous
integration

As soon as the work on a task is
complete, it is integrated into the
whole system.
After any such integration, all the
unit tests in the system must pass.

9. Sustainable pace Large amounts of overtime are not
considered acceptable as the net
effect is often to reduce code
quality and medium term
productivity

10. On-site customer A representative of the end-user of
the system (the Customer) should
be available full time for the use of
the XP team.
In an extreme programming
process, the customer is a member
of the development team and is
responsible for bringing system
requirements to the team for
implementation.

MODULE-2
3. a Explain the terms “user-requirements” and “system

requirements”. List different readers of user
requirements and system requirements. (8)

User requirements to mean the high-level abstract requirements
and system requirements to mean the detailed description of
what the system should do. User requirements and system
requirements may be defined as follows:
1. User requirements are statements, in a natural language plus
diagrams, of what services the system is expected to provide to
system users and the constraints under which it must operate.
2. System requirements are more detailed descriptions of the
software system’s functions, services, and operational
constraints. The system requirements document (sometimes
called a functional specification) should define exactly what is
to be implemented. It may be part of the contract between the
system buyer and the software developers.
The requirements document has a diverse set of users, ranging
from the senior management of the organization that is paying
for the system to the engineers responsible for developing the
software.
The diversity of possible users means that the requirements
document has to be a compromise between communicating the
requirements to customers, defining the requirements in precise
detail for developers and testers, and including information
about possible system evolution. Information on anticipated
changes can help system designers avoid restrictive design
decisions and help system maintenance engineers who have to
adapt the system to new requirements.

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

The level of detail that you should include in a requirements
document depends on the type of system that is being developed
and the development process used. Critical systems need to have
detailed requirements because safety and security have to be
analyzed in detail. When the system is to be developed by a
separate company (e.g., through outsourcing), the system
specifications need to be detailed and precise. If an in-house,
iterative development process is used, the requirements
document can be much less detailed and any ambiguities can be
resolved during development of the system.

3. b With a neat diagram explain the different types of
activities that are performed in the requirement
engineering process. (8)

Requirements engineering processes may include four high-
level activities. These focus on assessing if the system is useful
to the business (feasibility study), discovering requirements
(elicitation and analysis), converting these requirements into
some standard form (specification), and checking that the
requirements actually define the system that the customer wants
(validation).

This spiral model accommodates approaches to development
where the requirements are developed to different levels of
detail. The number of iterations around the spiral can vary so the
spiral can be exited after some or all of the user requirements
have been elicited. Agile development can be used instead of
prototyping so that the requirements and the system
implementation are developed together.

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

Although structured methods have a role to play in the
requirements engineering process, there is much more to
requirements engineering than is covered by these methods.
Requirements elicitation is a human-centered activity and
people dislike the constraints imposed on it by rigid system
models.

OR

4. a Explain the CBSE process with a neat diagram. (8)

CBSE processes are software processes that support component-
based software engineering. They take into account the
possibilities of reuse and the different process activities involved
in developing and using reusable components.
At the highest level, there are two types of CBSE processes:
1. Development for reuse: This process is concerned with
developing components or services that will be reused in other
applications. It usually involves generalizing existing
components.
2. Development with reuse: This is the process of developing
new applications using existing components and services.
These processes have different objectives and therefore, include
different activities. In the development for reuse process, the
objective is to produce one or more reusable components. You
know the components that you will be working with and you
have access to their source code to generalize them. In
development with reuse, you don’t know what components are
available, so you need to discover these components and design
your system to make the most effective use of them. You may
not have access to the component source code.

The basic processes of CBSE with and for reuse have supporting
processes that are concerned with component acquisition,
component management, and component certification:
1. Component acquisition is the process of acquiring
components for reuse or development into a reusable
component. It may involve accessing locally developed
components or services or finding these components from an
external source.
2. Component management is concerned with managing a
company’s reusable components, ensuring that they are properly
cataloged, stored, and made available for reuse.
3. Component certification is the process of checking a
component and certifying that it meets its specification.
Components maintained by an organization may be stored in a
component repository that includes both the components and
information about their use.

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

(i) CBSE for reuse
CBSE for reuse is the process of developing reusable
components and making them available for reuse through a
component management system. There would be specialist
component providers and component vendors who would
organize the sale of components from different developers.
Software developers would buy components to include in a
system or pay for services as they were used. CBSE for reuse is
most likely to take place within an organization that has made a
commitment to reuse-driven software engineering. Changes that
you may make to a component to make it more reusable include:
• removing application-specific methods;
• changing names to make them more general;
• adding methods to provide more complete functional coverage;
• making exception handling consistent for all methods;
• adding a ‘configuration’ interface to allow the component to
be adapted to different situations of use;
• integrating required components to increase independence.
(ii) CBSE with reuse
The CBSE with reuse process has to include activities that find
and integrate reusable components. Some of the activities within
this process, such as the initial discovery of user requirements,
are carried out in the same way as in other software processes.
The essential differences between CBSE with reuse and
software processes for original software development are:
1. The user requirements are initially developed in outline rather
than in detail, and stakeholders are encouraged to be as flexible
as possible in defining their requirements. Requirements that are
too specific limit the number of components that could meet
these requirements. However, unlike incremental development,

you need a complete set of requirements so that you can identify
as many components as possible for reuse.
2. Requirements are refined and modified early in the process
depending on the components available. If the user requirements
cannot be satisfied from available components, you should
discuss the related requirements that can be supported. Users
may be willing to change their minds if this means cheaper or
quicker system delivery.
3. There is a further component search and design refinement
activity after the system architecture has been designed. Some
apparently usable components may turn out to be unsuitable or
do not work properly with other chosen components.
4. Development is a composition process where the discovered
components are integrated. This involves integrating the
components with the component model infrastructure and, often,
developing adaptors that reconcile the interfaces of incompatible
components. Of course, additional functionality may also be
required over and above that provided by reused components.

4. b With a neat diagram, explain the different types of

non-functional requirements. (8)
The requirements for a system are the descriptions of what the
system should do. The process of establishing the services that
the customer requires from a system and the constraints under
which it operates and is developed.
Non-functional requirements, as the name suggests, are
requirements that are not directly concerned with the specific
services delivered by the system to its users. They may relate to
emergent system properties such as reliability, response time,
and store occupancy. Alternatively, they may define constraints
on the system implementation such as the capabilities of I/O

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

devices or the data representations used in interfaces with other
systems. Non-functional requirements, such as performance,
security, or availability, usually specify or constrain
characteristics of the system as a whole. The non-functional
requirements may come from required characteristics of the
software (product requirements), the organization developing
the software (organizational requirements), or from external
sources:

1. Product requirements: These requirements specify or
constrain the behavior of the software. Examples include
performance requirements on how fast the system must execute
and how much memory it requires, reliability requirements that
set out the acceptable failure rate, security requirements, and
usability requirements. The product requirement is an
availability requirement that defines when the system has to be
available and the allowed down time each day.

2. Organizational requirements: These requirements are broad
system requirements derived from policies and procedures in the
customer’s and developer’s organization. Examples include
operational process requirements that define how the system will
be used, development process requirements that specify the
programming language, the development environment or
process standards to be used, and environmental requirements
that specify the operating environment of the system. The
organizational requirement specifies how users authenticate
themselves to the system.
3. External requirements: This broad heading covers all
requirements that are derived from factors external to the system
and its development process. These may include regulatory
requirements that set out what must be done for the system to be
approved for use by a regulator, such as a central bank;
legislative requirements that must be followed to ensure that the
system operates within the law; and ethical requirements that
ensure that the system will be acceptable to its users and the
general public.
Non-functional requirements often conflict and interact with
other functional or non-functional requirements. Non-functional
requirements such as reliability, safety, and confidentiality
requirements are particularly important for critical systems.

MODULE-3
5. a What is meant by system model? With an ATM model

explain the context model. (8)
System modeling is the process of developing abstract models
of a system, with each model presenting a different view or
perspective of that system. System modeling has generally come
to mean representing the system using some kind of graphical

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

notation, which is now almost always based on notations in the
Unified Modeling Language (UML).
Context Diagrams are used in systems design to represent the
more important external actors that interact with the system. The
objective of a system context diagram is to focus attention on
external factors and events that should be considered in
developing a complete set of system requirements and
constraints.

The context model of the ATM describes the different
functionalities of the machine in accordance with the banking
business process. The core is the auto-teller system.

5. b Explain the role of software architecture. (8)

Architecture is a design of a system which gives a very high
level view of the parts of the system and how they are related to
form the whole system. An architecture description of a system
will therefore describe the different structures of the system.

The software architecture of a system is the structure or
structures of the system, which comprise software elements, the
externally visible properties of those elements, and the
relationships among them. Some of the important uses that
software architecture descriptions play are:
1. Understanding and communication: An architecture
description is primarily to communicate the architecture to its
various stakeholders, which include the users who will use the
system, the clients who commissioned the system, the builders
who will build the system, and, of course, the architects.
2. Reuse: Architecture descriptions can help software reuse.
Reuse is considered one of the main techniques by which
productivity can be improved, thereby reducing the cost of
software. The architecture has to be chosen in a manner such that
the components which have to be reused can fit properly and
together with other components that may be developed, they
provide the features that are needed.
3. Construction and Evolution: Architecture can help decide
what is the impact of changes to existing components on others
A suitable partitioning in the architecture can provide the project
with the parts that need to be built to build the system. During
software evolution, architecture helps decide what needs to be
changed to incorporate the new changes/features
4. Analysis: It is highly desirable if some important properties
about the behavior of the system can be determined before the
system is actually built. Software architecture provides
possibilities for software to consider the alternatives during
design to reach the desired performance levels like reliability

OR

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

6. a Explain architectural styles of C and C view (8)
 C &C view has two main elements—components and

connectors.
 Components: computational elements or data stores that

have some presence during the system execution.
 Connectors: define the means of interaction between these

components
 A component and connector (C&C) view of the system

defines the components, and which component is connected
to which and through what connector.

 C&C view describes a runtime structure of the system
 Architectural styles: some structures and related constraints

that have been observed in many systems and that seem to
represent general structures that are useful for architecture of
a class of problems

(i) Pipe and Filter
 well suited for systems that primarily do data transformation

some input data is received and the goal of the system is to
produce some output data by suitably transforming the input
data

 A filter performs a data transformation, and sends the
transformed data to other filters for further processing using
the pipe connector

(ii) Shared-Data Style
 there are two types of components:
i. data repositories: Stores shared data (these could be file
systems or databases)
 provide a reliable and permanent storage
 take care of any synchronization needs for concurrent

access provide data access support

ii. data accessors
 access data from the repositories
 perform computation on the data obtained
 if they want to share the results with other components, put

the results back in the depository
 Communication between data accessors is only through the

repository
(iii) Client-Server Style
 Clients can only communicate with the server, but not with

other clients
 Communication is initiated by a client which sends request

and server responds
 A 3-tier structure is commonly used by many application and

web systems
o Client-tier contains the clients
o Middle-tier contains the business rules
o Database tier has the information

6. b Explain state machine models with an example. (8)
 a class is not a functional abstraction and cannot be viewed

as an algorithm.
 A method of a class can be viewed as a functional module,

and the methods can be used to specify the logic
 An object of a class has some state and many operations on

it.
 A method to understand the behavior of a class is to view it

as a finite state automata (FSA).
 An FSA consists of states and transitions between states

(values), which take place when some events occur

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

 A state diagram relates events and states by showing how the
state changes when an event is performed

MODULE-4
7. a Explain function oriented design. (8)
 Design Principles
o Correctness: the system is built precisely according to the

design which satisfies the requirements of that system
o Verifiable: in accordance with the requirements document
o Complete: implements all the specifications
o Traceable: all design elements can be traced to some

requirements
o Efficiency: is concerned with the proper use of scarce

resources by the system
o Simplicity: is perhaps the most important quality criteria for

software systems.
 Abstraction
 The basic goal of system design is to specify the modules in

a system and their abstractions
 An abstraction of a component describes the external

behavior of that component without bothering with the
internal details

 Abstraction is used for existing components as well as
components that are being designed

 There are two common abstraction mechanisms for software
systems:

o functional abstraction: a module is specified by the function
it performs

 It is the basis of partitioning in function-oriented approaches
o Data abstraction supports certain operations are required

from a data object, depending on the object and the
environment in which it is used

 Modularity:
 two of the most important quality criteria for software design

are: simplicity and understandability
 Modularity supports independence of models
 Modularity enhances design clarity, eases implementation
 Reduces cost of testing, debugging and maintenance
 Design hierarchy: two possible approaches
(i) Top-down approach: starts from the highest-level component
of the hierarchy and proceeds through to lower levels.
 starts by identifying the major components of the system,

decomposing them into their lower- level components and
iterating until the desired level of detail is achieved.

(ii) Bottom-up approach: starts with the lowest-level component
of the hierarchy and proceeds through progressively higher
levels to the top-level component.
 Bottom-up methods work with layers of abstraction.
 Starting from the very bottom, operations that provide a

layer of abstraction are implemented.
 The operations of this layer are then used to implement more

powerful operations and a still higher layer of abstraction,
until the stage is reached where the operations supported by
the layer are those desired by the system

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

7. b Write a note on cohesion and coupling. (8)
 A module is a logically separable part of a program
 Modularization criteria: (i) Coupling and (ii) Cohesion
(i) Cohesion (intra-module criteria)
 It identifies the relationship between elements of the same

module
 determining how closely the elements of a module are

related to each other
 Cohesion of a module represents how tightly bound the

internal elements of the module are to one another
 the greater the cohesion of each module in the system, the

lower the coupling between modules is. (i.e) max(cohesion)
and min(coupling)

 There are several levels of cohesion:
o Coincidental cohesion occurs when there is no meaningful

relationship among the elements of a module
o A module has logical cohesion if there is some logical

relationship between the elements of a module, and the
elements perform functions that fall in the same logical class

o Temporal cohesion is the same as logical cohesion, except
that the elements are also related in time and are executed
together

o A procedurally cohesive module contains elements that
belong to a common procedural unit

o Sequentially cohesive modules bear a close resemblance to
the problem structure

o Functional cohesion: In a functionally bound module, all
the elements of the module are related to performing a single
function. It is the strongest cohesion

o A module with communicational cohesion has elements
that are related by a reference to the same input or output
data

(ii) Coupling (inter-module criteria)
 The notion of coupling attempts to capture this concept of

"how strongly" different modules are interconnected
 Coupling between modules is the strength of

interconnections between modules or a measure of
interdependence among modules

 "Highly coupled" modules are joined by strong
interconnections, while "loosely coupled" modules have
weak interconnections.

 Factors affecting coupling:
o Complexity of the interface
o obscurity of the interface between modules
 coupling is reduced when elements in different modules

have little or no relationship between them

OR

8. a Briefly explain the architectural patterns for

distributed systems. (8)
Five architectural styles:
1. Master-slave architecture, which is used in real-time systems
in which guaranteed interaction response times are required.
2. Two-tier client–server architecture, which is used for simple
client–server systems, and in situations where it is important to
centralize the system for security reasons. In such cases,
communication between the client and server is normally
encrypted.

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

3. Multitier client–server architecture, which is used when
there is a high volume of transactions to be processed by the
server.
4. Distributed component architecture, which is used when
resources from different systems and databases need to be
combined, or as an implementation model for multi-tier client–
server systems.
5. Peer-to-peer architecture, which is used when clients
exchange locally stored information and the role of the server is
to introduce clients to each other. It may also be used when a
large number of independent computations may have to be
made.

8. b Discuss the complexity matrix for function oriented

design. (4)
Function-oriented software metrics use a measure of the
functionality delivered by the application as a normalization
value. Since ‘functionality’ cannot be measured directly, it must
be derived indirectly using other direct measures. Function-
oriented metrics were first proposed by Albrecht , who
suggested a measure called the function point. Function points
are derived using an empirical relationship based on countable
(direct) measures of software's information domain and
assessments of software complexity.
Function points are computed by completing the table as shown
below. Five information domain characteristics are determined
and counts are provided in the appropriate table location.
Information domain values are defined in the following manner:
Number of user inputs. Each user input that provides distinct
applicationoriented data to the software is counted. Inputs

should be distinguished from inquiries, which are counted
separately.

 Number of user outputs. Each user output that provides
application oriented information to the user is counted.
Example: reports, screens, error messages, etc.

 Number of user inquiries. An inquiry is defined as an on-
line input that results in the generation of some
immediate software response in the form of an on-line
output. Each distinct inquiry is counted.

 Number of files. Each logical master file (i.e., a logical
grouping of data that may be one part of a large database
or a separate file) is counted.

 Number of external interfaces. All machine readable
interfaces (e.g., data files on storage media) that are used
to transmit information to another system are counted.

Measurement
parameter

Count Weighting factor
Simple Average Complex

No. of user
inputs

 X 3 4 6 =

No. of user
outputs

 X 4 5 7 =

No. of user
inquiries

 X 3 4 6 =

No. of files X 7 10 15 =
No. of
external
interfaces

 X 5 7 10 =

Count total

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

To compute function points (FP), the following relationship is
used:
FP = count total [0.65 + 0.01 Σ(Fi)] where count total is the sum
of all FP entries .

8. c Write a note on Software as a Service. (4)

This notion of SaaS involves hosting the software remotely and
providing access to it over the Internet. The key elements of
SaaS are the following:
1. Software is deployed on a server (or more commonly a
number of servers) and is accessed through a web browser. It is
not deployed on a local PC.
2. The software is owned and managed by a software provider,
rather than the organizations using the software.
3. Users may pay for the software according to the amount of
use they make of it or through an annual or monthly
subscription. Sometimes, the software is free for anyone to use
but users must then agree to accept advertisements, which fund
the software service.
For software users, the benefit of SaaS is that the costs of
management of software are transferred to the provider. The
provider is responsible for fixing bugs and installing software
upgrades, dealing with changes to the operating system
platform, and ensuring that hardware capacity can meet demand.
Software licence management costs are zero. The software may
be accessed from mobile devices, such as smart phones, from
anywhere in the world.
Disadvantages:
 the costs of data transfer to the remote service
 lack of control over software evolution
 problems with laws and regulations

MODULE-5
9. a Explain project schedule and staffing. (8)
 Once the effort is estimated, various schedules (or project

duration) are possible, depending on the number of resources
(people) put on the project

 A schedule cannot be simply obtained from the overall effort
estimate by deciding on average staff size and then
determining the total time requirement by dividing the total
effort by the average staff size.

 In a project, the scheduling activity can be broken into two
sub-activities:

o determining the overall schedule (the project duration) with
major milestones, and

o developing the detailed schedule of the various tasks.
 One method to determine the normal (or nominal) overall

schedule is to determine it as a function of effort
 One approach: fitting a regression curve through the scatter

plot obtained by plotting the effort and schedule of past
projects

 the total duration, M, in calendar months can be estimated
by M = 4.1*E0.36 by IBM Federal Systems Division

 In COCOMO, the equation for schedule for an organic type
of software is M = 2.5*E0.38

 Square root check (rule of thumb), is sometimes used to
check the schedule of medium-sized projects

 the proposed schedule can be around the square root of the
total effort in person-months

 Detailed Scheduling
 Once the milestones and the resources are fixed, it is time to

set the detailed scheduling

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

 For detailed schedules, the major tasks fixed while planning
the milestones are broken into small schedulable activities in
a hierarchical manner.

 At each level of refinement, the project manager determines
the effort for the overall task from the detailed schedule and
checks it against the effort estimates.

 Activities related to tasks such as project management,
coordination, database management, and configuration
management may also be listed in the schedule, even though
these activities have less direct effect on determining the
schedule

 Team Structure
 Detailed scheduling is done only after actual assignment of

people has been done
(i) Hierarchical (Chief Programmer Team) organization:
 the project manager is responsible for all major technical

decisions of the project
 The team typically consists of programmers, testers, a

configuration controller, and possibly a librarian for
documentation.

(ii) Egoless team (democratic team) organization:
o consist of ten or fewer programmers
o Group leadership rotates among the group members
o suited for long-term research-type projects

(iii) Emerging organization:
 recognizes that there are three main task categories in

software development: (i) development related, (ii) testing
related and (iii) management related

 recognizes that it is often desirable to have the test and
development team be relatively independent, and also not to
have the developers or tests report to a nontechnical manager

 there is an overall unit manager, under whom there are three
small hierarchic organizations – (i) for development, (ii) for
testing and (iii) for program management

o The developers write code and they work under a
development manager

o The testers will test the code and they work under a test
manager

o The program managers provides the specifications for what
is being built, and ensure that development and testing are
properly coordinated

9. b Explain the activities of software configuration

management plan. (8)
 Planning for configuration management involves:
o identifying the configuration items and
o specifying the procedures to be used for controlling and

implementing changes to them
 The activities in this stage include:
o Identify configuration items, including customer-supplied

and purchased items.
o Define a naming scheme for configuration items.
o Define the directory structure needed for configuration

management.
o Define version management procedures, and methods for

tracking changes to configuration items.
o Define access restrictions.
o Define change control procedures.

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

o Identify and define the responsibility of the configuration
controller.

o Identify baseline points
o Define a backup procedure and a reconciliation procedure, if

needed.
o Define a release procedure.
• The output of this phase is the configuration management plan

OR

10. a Describe in details the process of testing. (8)

• The basic goal of the software development process is to
produce software that has no errors

• Most of the verification methods are based on human
evaluation

• Regression testing: old test cases are executed with the
expectation that the same old results will be produced (after
incorporating changes)

• testing should not be done on-the-fly
• testing process focuses on how testing should proceed for a

particular project
 Levels of Testing
• Testing is usually relied upon to detect the faults remaining

from earlier stages
• different levels of testing are used in the testing process; each

level of testing aims to test different aspects of the system

• Unit testing: different modules are tested against the

specifications produced during design for the modules
• integration testing: many unit tested modules are combined

into subsystems, which are then tested
• System testing: complete and integrated software is tested
• Acceptance testing: a system is tested for acceptability
 Test Plan
• testing commences with a test plan and terminates with

acceptance testing.
• a general document for the entire project that defines:
o the scope,
o approach to be taken, and
o the schedule of testing
o identifies the test items for the entire testing process and
o the personnel responsible for the different activities of

testing
• The inputs for forming the test plan are:
(1) project plan,
(2) requirements document, and
(3) system design document.
 Test Case Specifications

CMR INSTITUTE OF TECHNOLOGY, BANGALORE
DEPARTMENT OF COMPUTER APPLICATIONS

ANSWER KEY FOR UNIVERSITY EXAMINATION – DECEMBER 2018
17MCA34 – SOFTWARE ENGINEERING

--

• to be done separately for each unit
• the features to be tested for this unit must be determined
• the test cases are specified for testing the unit
• Test case specification gives:
o All test cases,
o inputs to be used in the test cases,
o conditions being tested by the test case, and
o outputs expected for those test cases
• two basic reasons test cases are specified before they are

used for testing:
o Test case review (having the test case specification in the

form of a document)
o the process of specifying all the test cases will be used for

testing helps the tester in selecting a good set of test cases

10. b Mention the difference between white box testing

and block box testing. (8)
The following are the major differences:
Sl. No. Black box testing White box testing

1 It is used to test the
software without
knowing the internal
structure of code or
program.

The internal structure is
being known to tester who
is going to test the software.

2 It also knowns as
data-driven, box
testing, data-, and
functional testing

It is also called structural
testing, clear box testing,
code-based testing, or glass
box testing

3 The main objective of
this testing is to check

The main objective of
White Box testing is done

what functionality of
the system under test

to check the quality of the
code

4 This testing is carried
out by testers.

this type of testing is carried
out by software developers

5. Implementation
Knowledge is not
required

Implementation
Knowledge is required

6. Black Box testing can
be started based on
Requirement
Specifications
documents

White Box testing can be
started based on Detail
Design documents

7 This type of testing is
ideal for higher levels
of testing like System
Testing, Acceptance
testing

Testing is best suited for a
lower level of testing like
Unit Testing, Integration
testing

8 Granularity is low Granularity is high

