
Page 1 of 19

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – Nov. 2019

Sub: Unix and Shell Programming
Sub

Code:
18MCA12

Date: 16/11//2019 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 Explain the below mentioned commands with its usage and

examples.

i) script ii) uname iii) spell iv) bc v) who
OR

[10]

CO5 L2

2(a) State and explain the types of shell variables in UNIX. [7] CO5 L2

(b) Write a note on here document. [3] CO5 L1

3
PART II

With a neat diagram, explain the architecture of Unix operating

system.
OR

[10]

CO1 L2

4a)

Briefly explain for loop in shell script with examples.

[5]
CO5 L2

b) Explain different forms of if statement with

 an example.

[5]
CO5 L2

5a)

PART III

Differentiate between hard link and soft link

[5]

CO5

L2

b) With suitable example bring out the difference between absolute

and relative path names.
OR

[5]

CO5 L2

6.a) Briefly explain the unix file system.

[6]
CO1 L2

b) What is a file? Explain the categories of files found in UNIX

Operating System.

[4]

CO1 L1

7
PART IV

Write a shell script to find the given input character is an uppercase,

small case, digit or special symbol using case conditional statement.

[10]

CO5

L3

8.a)

What are attributes? How to list file attributes and directory attributes?

Discuss with examples.

[5]

 CO1 L2

b) Explain how one can change the permission of a file in detail.
PART V

[5] CO3 L2

Page 2 of 19

9 Discuss the types of tests performed by the test command.

[10] CO5 L1

10 Describe the important features of the UNIX operating system [10] CO1 L2

Page 3 of 19

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1– Nov. 2019

Sub: Unix and Shell Programming
Sub

Code:
17MCA12

Branch

:
MCA

Date: 16/09/2019 Duration:
90

min’s
Max Marks: 50 Sem V OBE

1. Explain the below mentioned commands with its usage and examples.

i) script ii) uname iii) spell iv) bc v) who

script:
The script command is used to record the session in a file. When you have are doing

some important work, and would like to keep a log of all your activities, you should use

script command immediately after logging in. For example,

$script

Script started, file is typescript

$

Now onwards, whatever you type, that will be stored in the file typescript. Once the

recording is over, you can terminate the session by using exit command.

$exit

Script done, file is typescript

$

To view the file typescript, one can use cat command.

Note that, the usage of script command overwrites any existing file with name typescript. If

you want to append the new content to existing file, then use –a as below –

$script –a

Now, the previous typescript will be appended with the activities of this session.

If you want to create your own file instead of typescript file, then give the required filename

as –

$script mylogfile

Now, the activities of this session will be stored in the file mylogfile.

NOTE that, some activities like the commands used in the full-screen mode like vi editor

will not be recorded properly when we record session using script command.

spell
The spell command is used to check the spelling in a text file. When the name of a file is given an

argument to this command, it lists out all the mistakes (words without proper meaning as per the

understanding of UNIX). To understand this command, let us first

create a file as below –

$cat >test.txt

hello hw are yu?

Im doin fine

Now, apply spell command on the file test.txt as shown –

$ spell test.txt

doin

hw

Im

yu

One can observe that the words with spelling mistakes have been displayed in the order.

Now, if you want to correct these words, ispell command can be used. ispell is actually an

interactive editor, which displays various suggestions for a mistaken word. Then, user has to

Page 4 of 19

choose one of the possible suggestions listed and the mistaken word will be replaced by the

corrected word. For example,

$ispell test.txt

 uname
The command uname is a short-form for UNIX name, which displays the details like name

and version of the machine and OS currently running. It can display various details based

on the option given to it as an argument. Consider following situations:

 $uname

Linux

The command without any options displays the name of underlying OS.

 $uname –a

Linux server4 2.6.18-128.el5xen #1 SMP Wed Dec 17 12:01:40

EST 2008 x86_64 x86_x

This has displayed details like kernel name, node name, kernel release, kernel

version etc.

 $uname –n

server4

When your system is connected to network, it prints the name of the machine in

network. This name is required while copying the files from remote machine

using ftp command.

bc
UNIX provides two types of calculators – a graphical (GUI) calculator (similar to the one

available in windows OS) and a character based bc command. A visual calculator can be

available using xcalc command and it is available only on X Window system, but not on

command-line based terminals.

The calculator available through bc command is a very powerful, but sadly a most

neglected tool in UNIX. When bc command is invoked without any argument, it does nothing but

waits for the input from the keyboard. Once the job is done, ctrl+d has to be

pressed to release the command and to get a prompt.

The usage of bc command is illustrated here with examples.

 Basic operations:

$bc

3+5

8

5*6

30

6-10

-4

[ctrl+d]

 To perform more than one operation in a single line:

$bc

2^4; 3+6 //using semicolon as a separator

16

9

[ctrl+d]

 Setting scale for required precision during division operation:

By default, bc performs truncated division (or integer division). For example,

$bc

9/5

1

Here, the output 1, instead of 1.8. To avoid such truncation, one can set the

precision after the decimal point. For example,

$bc

scale=2

9/5

1.80

Page 5 of 19

22/7

3.14

 Converting numbers from one base to the other:

One can change the base of a number by setting ibase (input base) or obase

(output base). For example –

$bc

ibase=2 //setting input base as 2

1100

12 //decimal equivalent of 1100

11001110

206 //decimal equivalent of 11001110

The reverse is possible through obase as shown below –

$bc

obase=2 //setting output base as 2

14

1110 //binary equivalent of 14

308

100110100 //binary equivalent of 308

obase=16 //setting output base as 16 (hexa)

14

E //hexadecimal equivalent of 14

 Storing variables:

One can store values in variables and then use them. But, bc supports only single

lowercase letters (a-z) and hence, one can use only 26 variables at a time. For

example –

$bc

a=5; b=3; c=2

p=a+b*c

p //use variable name to display the result

11

Note that, bc is a pseudo-programming language that supports arrays, functions,

conditional structures (if) and looping structures (for and while). It also supports library of

some scientific functionalities. It can handle very large numbers. If the result of some

calculation is 900 digits, the bc command shows every digit of it!!

The reverse is possible through obase as shown below –

$bc

obase=2 //setting output base as 2

14

1110 //binary equivalent of 14

308

100110100 //binary equivalent of 308

obase=16 //setting output base as 16 (hexa)

14

E //hexadecimal equivalent of 14

,

$who

Normally a UNIX system is used by multiple users at a time. One user may needs to know the list

of other users who are using the system currently. The who command is used for this purpose.

This command displays name of the users (login ID used to log in), name of the terminal and date

and time of login. For example –

$who

root :0 Sept 04 10:12

chetana tty01 Sept 04 11:11

raghu tty02 Sept 04 12:35

ram tty03 Sept 04 14:08

Here the first column shows the user-ids of four users who are currently logged in. In the second

column, tty01 etc. are name of the terminals and the last column shows date and time of their

Page 6 of 19

respective login. This indicates that currently (while giving who command), four users have

logged in. The term tty indicates teletype. The machine identifies a person with his/her username.

So, user will be the owner of file he has created. When a file created by one user, say chetana is

sent to another user, the machine will inform the recipient that a mail has arrived from chetana.

Some of the systems display as below when who command is used –

$who

chetana pts/1 Sept 04 11:11

Here, pts/1 is the name of the terminal. The term pts stands for pseudo-terminal slave.

Most of the UNIX/Linux systems have software implementation as an interface to interact

with real terminal. It is called as pseudo-terminal or pseudo-teletype represented by pty.

The pts is a slave part of pty.

The header option –H can be used along with –u option to get more information on the who

command.

$who –Hu

NAME LINE TIME IDLE PID COMMENT

root :0 2007-01-12 04:49 ? 5595

chetana pts/1 2007-01-13 05:39 . 24081 (172.16.4.205)

Here, first three columns are same as before. The fourth column IDLE indicates from how long

the user is idle. The dot (.) indicates the respective user was active in the last one minute. The

question mark (?) indicates that the user is idle from quite a long time, which is unknown. The

fifth column PID (process identifier) will be discussed in later chapters. The comment line

indicates some special comment, if any. In the above example, for the user chetana, it is showing

the IP address of the machine.

2.a State and explain the types of shell variables in UNIX.

Shell variables are of 2 types

Local variables

Environment Variables

Local Variables:

 They are more restricted in scope

Ex: DOWNLOAD_DIR=/home/kumar/download

 echo $DOWNLOAD_DIR

Environment Variables:

 They are available in the users total environment i.e., the sub shells tha run shell

scripts and mail commands and editors.

 The common environment variables are

Variable Significance

HOME Home directory-the directory a user is placed on logging in

PATH List of directories searched by shell to locate a command

LOGNAME Login name of user

USER Login name of user

MAIL Absolute pathname of users mailbox office

MAILCHECK Mail checking interval for incoming mail

TERM Type of terminal

PWD Absolute pathname of current directory

CDPATH List of directories searched by cd when used with a non absolute path

name.

PS1 Primary prompt string

PS2 Secondary prompt string

SHELL Users login shell and one invoked by programs having shell escapes

2.b Write a note on here document.
Sometimes, the shell uses the << symbols to read data from the same file containing the

Page 7 of 19

script. This is referred to as here document, indicating that the data is here only, not in a

separate file. Any command using standard input can also take input from a here

document.

Consider an interactive script, that is, a shell script which reads some input from the

keyboard.

When we run this script in a normal way, it would look something like this –

Page 8 of 19

$ sh hereDoc.sh

Enter your name:

Ramu

Enter your age:

21

Your name is Ramu, Your age is 21

Now, let us see, how to use here document for this script. Run the above script as shown

below –

$ sh hereDoc.sh <<END

>Ramu #shell waits for your input from this line

>21

>END # till this line

Enter your name:

Enter your age:

Your name is Ramu, Your age is 21

Observe the above lines. While running the script, we have used a term <<END. Here, the

symbol << indicates that the file hereDoc.sh will be reading an input from the here

document but not from the keyboard. The word END used is just an example for delimiter,

and one can use any word (not UNIX command). After the first line, user can keep giving

the inputs. Once the input is done, the delimiter has to be provided. Immediately after

seeing the delimiter word for the second time, the hereDoc.sh file starts executing and the

read commands inside the script will not wait for the user input from the keyboard, instead,

it will be taken from the here document created already.

3. With a neat diagram, explain the architecture of Unix operating system.
UNIX OS distributes its major jobs into two agencies viz. kernel and shell.

Kernel: The kernel is also known as operating system. It interacts with the hardware of the

machine. The kernel is the core of OS and it is a collection of routines/functions written in C.

Kernel is loaded into memory when the system is booted and communicates with the hardware.

The application programs access the kernel through a set of functions called as system calls. The

kernel manages various OS tasks like memory management, process scheduling, deciding job

priorities etc. Even if none of the user programs are running, kernel will be working in a

background.

 Shell: The shell interacts with the user. It acts as a command interpreter to translate user’s

command into action. It is actually an interface between user and the kernel. Even though there

will be only one kernel running, multiple shells will be active – one for each user. When a

command is given as input through the keyboard, the shell examines the command and simplifies

it and then communicates with the kernel to see that the command is executed. The shell is

represented by sh (Bourne Shell), csh (C Shell), ksh (Korn shell), bash (Bash shell).

 The relationship between kernel and shell is shown in Figure

Page 9 of 19

The File and Process

The file and the process are two simple entities that support UNIX.

File: A file is an array of bytes and it can contain any data. Various files are related to each other

by a hierarchical structure. Even a user (user name) is placed in this file system. UNIX considers

directories and the devices also as the members of file system. In UNIX, the major file type is text

and the behavior of UNIX is controlled mainly by text files. UNIX provides various text

manipulation tools through which the files can be edited without using an editor.

Process: A processing a program under execution. Processes are also belonging to separate

hierarchical structure. A process can be created and destroyed. UNIX provides tools to the user to

control the processes, move them between foreground and background and to kill them.

The System Calls:

 System calls are used to communicate with the kernel. There are more than thousand commands

in UNIX, but they all use few set of function called as system calls for communication with

kernel. All UNIX flavors (like Linux, Ubuntu etc) all use the same system calls. For example,

write is a system call in UNIX. C programmer in UNIX environment can directly use this system

call to write data into a file. Whereas, the C Programmer in Windows environment may need to

use library function like fprintf() to write into a file. A system call open in UNIX can be used to

open a file or a device. Here, the purpose is different, but the system call will be same. Such

feature of UNIX allows it to have many commands for user purpose, but only few system calls

internally for the actual work to be carried out in association with the kernel.

4.a. Briefly explain for loop in shell script with examples.
It is very important to note that (especially those who know higher programming languages)

the for loop in shell script is NOT same as that in other languages. One can neither

increment/decrement the values, nor specify the condition to be met. Instead, it just iterates

over the elements in a list. A set of commands are executed until the list gets exhausted.

The syntax is –

for variable in list

do

execute commands

done

Consider an example –

Write a shell script to find sum of numbers provided through command line.

Page 10 of 19

sum.sh

Output:

While running this script, give command line arguments similar to –

$ sh sum.sh 10 20 30

Sum=60

4.b Explain different forms of if statement with an example.
One of the important requirements in programming is conditional structures. In shell

programming, the conditional construct if can be used in the following ways –

if statement:
if command is successful

then

execute commands

fi

if else statement:

if command is successful

then

execute commands

else

execute commands

fi

elif statement:

if command is successful

then

execute commands

elif command is successful

then

execute commands

elif command is successful

then

…………….

else

……………..

fi

Ex:

#!/bin/sh

#Illustration of if statement

x=5

y=10

if test $x -lt $y

then

echo "$x is less than $y"

else

echo "$y is less than $x"

fi

if [$x -ne $y]; then

echo "$x and $y are not equal"

fi

Page 11 of 19

5.a Differentiate between hard link and soft link.

5.b With suitable example bring out the difference between absolute

and relative path names.

Page 12 of 19

6.a Briefly explain the unix file system.
Unix file system is a logical method of organizing and storing large amounts of information in a

way that makes it easy to manage. A file is a smallest unit in which the information is stored.

Unix file system has several important features. All data in Unix is organized into files. All files

are organized into directories. These directories are organized into a tree-like structure called the

file system. Files in Unix System are organized into multi-level hierarchy structure known as a

directory tree. At the very top of the file system is a directory called “root” which is represented

by a “/”. All other files are “descendants” of root.

Directories or Files and their description –

• / : The slash / character alone denotes the root of the filesystem tree.

• /bin : Stands for “binaries” and contains certain fundamental utilities, such as ls or cp, which are

generally needed by all users.

• /boot : Contains all the files that are required for successful booting process.

• /dev : Stands for “devices”. Contains file representations of peripheral devices and pseudo-

devices.

• /etc : Contains system-wide configuration files and system databases. Originally also contained

“dangerous maintenance utilities” such as init, but these have typically been moved to /sbin or

elsewhere.

• /home : Contains the home directories for the users.

• /lib : Contains system libraries, and some critical files such as kernel modules or device drivers.

• /media : Default mount point for removable devices, such as USB sticks, media players, etc.

• /mnt : Stands for “mount”. Contains filesystem mount points. These are used, for example, if the

system uses multiple hard disks or hard disk partitions. It is also often used for remote (network)

filesystems, CD-ROM/DVD drives, and so on.

• /proc : procfs virtual filesystem showing information about processes as files.

• /root : The home directory for the superuser “root” – that is, the system administrator. This

account’s home directory is usually on the initial file system, and hence not in /home (which may

be a mount point for another filesystem) in case specific maintenance needs to be performed,

during which other filesystems are not available. Such a case could occur,

for example, if a hard disk drive suffers physical failures and cannot be properly mounted.

Page 13 of 19

• /tmp : A place for temporary files. Many systems clear this directory upon startup; it might have

tmpfs mounted atop it, in which case its contents do not survive a reboot, or it might be explicitly

cleared by a startup script at boot time.

• /usr : Originally the directory holding user home directories,its use has changed. It now holds

executables, libraries, and shared resources that are not system critical, like the X Window

System, KDE, Perl, etc. However, on some Unix systems, some user accounts may still have a

home directory that is a direct subdirectory of /usr, such as the default as in Minix. (on modern

systems, these user accounts are often related to server or system use, and not directly used by a

person).

• /usr/bin : This directory stores all binary programs distributed with the operating system not

residing in /bin, /sbin or (rarely) /etc.

• /usr/include : Stores the development headers used throughout the system. Header files are

mostly used by the #include directive in C/C++ programming language.

• /usr/lib : Stores the required libraries and data files for programs stored within /usr or elsewhere.

• /var : A short for “variable.” A place for files that may change often – especially in size, for

example e-mail sent to users on the system, or process-ID lock files.

• /var/log : Contains system log files.

• /var/mail : The place where all the incoming mails are stored. Users (other than root) can access

their own mail only. Often, this directory is a symbolic link to /var/spool/mail.

• /var/spool : Spool directory. Contains print jobs, mail spools and other queued tasks.

• /var/tmp : A place for temporary files which should be preserved between system reboots.

6.b What is a file? Explain the categories of files found in UNIX Operating

System.
The file is a container for storing information. Unlike old DOS files, a UNIX file does notcontain eof

(end-of-file) character. It contains only the information stored by the user. All the

attributes of a file are kept in a separate area of the hard disk, which can be accessible by

only the kernel. UNIX treats directories and devices also as files. Even the physical devices

like hard disk, memory, CD-ROM, printer, modem etc. are treated as files.

In UNIX, files are divided into three categories –

 Ordinary file

 Directory file

 Device file

These three types of files are discussed in detail in the following sections –

2.2.1 Ordinary (Regular) File
It is a most common type of file that contains only data as a stream of characters. An

ordinary file can be one among these –

 Text file: contains only printable characters. Source codes of programming

languages like C, Java, C++, Perl, Shell script etc. are all text files. A text file

contains lines of characters where every line is terminated with a newline character

– known as linefeed (LF). Whenever you press [Enter] key while inserting text into a

file, the LF character is appended. One cannot see this character, but it can be

made visible using the command od.

 Binary file: contains both printable and non-printable characters covering entire

ASCII (0 – 255) set. The object codes, executable files etc. created by compiling C

language are binary files. Most of the UNIX commands are binary files.

Image/audio/video files are binary files. Trying to display the contents of such files

using simple cat command would produce unreadable output.

2.2.2 Directory File
A directory contains no data, but it keeps some information about the files and

subdirectories that it contains. The UNIX file system is organized with a number of

directories and subdirectories. A user also can create them, as and when required. Usually,

a group of related files are kept in a single directory. Sometimes, files with same name are

kept in different directories.

A directory file contains an entry for every file and subdirectory it has. Each such entry has

two components viz. –

 The filename

 A unique identification number for the file or directory (called as the inode

number)

Page 14 of 19

Thus, a directory actually do not contain the file itself, rather, it contains only the file name

and a number.

One cannot write into a directory file. But, the actions like creating a file, removing a file etc.

makes kernel to update the corresponding directory by creating/removing filename and

inode number associated with that file.

2.2.3 Device File
The activities like printing files, installing softwares from CD-ROM, taking backup of files

into a tape/drive etc. are performed by reading or writing the file representing the device.

For example, when you are printing a file in a printer, you are writing a file associated with

printer.

Device filenames are generally found inside a single directory structure, /dev. A device file

is not a stream of characters. In fact, it does not contain anything. The operation of a device

is completely managed by the attributes of its associated file. The kernel identifies a device

from its attributes and then uses them to operate the device.

7. Write a shell script to find the given input character is an uppercase, small

case, digit or special symbol using case conditional statement.

printf 'Please enter a character: '

IFS= read -r c

case $c in

 ([[:lower:]]) echo lowercase letter;;

 ([[:upper:]]) echo uppercase letter;;

 ([[:alpha:]]) echo neither lower nor uppercase letter;;

 ([[:digit:]]) echo decimal digit;;

 (?) echo any other single character;;

 (*) echo anything else;;

esac
8.a. What are attributes? How to list file attributes and directory attributes?

Discuss with examples.
Every file is associated with a table that contains various attributes of a it, except its name

and contents. This table is called as inode (index node) and accessed by the inode

number. The inode contains following attributes of a file –

 File type (ordinary, directory, device etc)

 File permissions

 Number of links

 The UID of the owner

 The GID of the group owner

 File size in bytes

 Date and time of last modification

 Date and time of last access

 Date and time of last change of the inode

 An array of pointer that keep track of all disk blocks used by the file

ls –l option: Listing File Attributes
The –l option of ls command is used for listing the various attributes like permissions, size,

ownership etc. of a file. The output of ls –l is referred to as the listing. The –l option can be

combined with other options for displaying other attributes, or ordering the list in a different

sequence. The command ls use inode of a file to fetch its attributes. Consider the following

example of ls –l which displays seven attributes of all files in the current directory.

$ ls -l

total 144

-rw-rw-r-- 1 john john 280 Jan 30 09:56 caseEx.sh

-rw-rw-r-- 1 john john 104 Feb 3 06:40 cmdArg.sh

-rw-rw-r-- 1 john john 199 Jan 29 10:58 ifEx.sh

-rw-rw-r-- 1 john john 217 Jan 19 09:25 logfile

drwxrwxr-x 2 john john 4096 Feb 6 05:48 myDir

-rwxrwxr-x 1 john john 29 Jan 22 10:04 myFirstShell

-rw-rw-r-- 1 john john 43 Jan 22 10:44 second.sh

Page 15 of 19

The output of ls –l starts with total 144, indicates that a total of 144 blocks are occupied

by these files on disk. The 7 types of attributes/fields displayed by the command are

discussed below –

 File Type and Permissions: The first column shows the type and permissions

associated with each file. If the first character in this column is – (hypen), then it is

an ordinary file. On the other hand, if the first character is d, then it is a directory.

Then, there is a series of r, w, x and – (hyphen) indicating file permissions read,

write and execute. The hyphen indicates absence of particular permission.

 Links: The second column indicates the number of links associated with the file. It is

a number of filenames maintained by the system of that file. Usually for ordinary

files, it will be just 1. But for directories, it will be number of files contained within that

directory (including current directory).

 Ownership: The creator of the file would be its owner. In the third column, it shows

john as the owner. The owner has full authority to modify the contents and

permissions of a file. Similarly, the owner of a directory can create modify or remove

files in that directory.

 Group Ownership: While opening a user account, a system administrator assigns

the user to some group. The fourth column represents the group owner of that file.

 File Size: Size of the file in bytes is shown as fifth column. The size is only a

character count of the file, but not the amount of space it occupies in the disk.

 Last Modification Time: The 6th, 7th and 8th columns indicate the last modification

time of the file. A file is said to be modified only if its contents have changed. If you

change only the permission or ownership of the file, its last modification time field will

not get affected.

 Filename: The last field is the name of the file, usually in ASCII collating sequence.

 ls –d option: Listing Directory Attributes
If we want to list the attributes of only the directory, but not its contents, we can use –d

option as below –

$ ls –ld myDir

drwxrwxr-x 2 john john 4096 Feb 6 05:48 myDir

8.b. Explain how one can change the permission of a file in detail.
A file or directory is created with a default set of permissions. Generally, in the default

setting, write permission is not given to group and others. That is, only the user (owner) the

file can write a file. But, read permission will be given to all. The chmod (change mode)

command is used for assigning/removing different permissions to/from category (user,

group, others). This command can be run only by the user (owner) and the super-user

(admin). The chmod command can be used in two ways –

 In a relative manner by specifying the changes to the current permissions

 In an absolute manner by specifying the final permissions

Consider the permissions of an existing file test as below –

$ls –l test

-rw-r--r-- 1 john richard 853 Sep 5 23:38 test

It is observed here that, by default the execute permission is not there even for the user

(owner). Keeping this status of the file test as a base, let us discuss different ways of using

chmod command.

Relative Permissions
When changing permissions in a relative manner, chmod changes only the permissions

specified in the command line and leaves the other permissions unchanged. The syntax is–

chmod category operation permission filenames

The argument for chmod is an expression consisting of some letters and symbols

describing user category and type of permission being assigned/removed. The expression

contains three components:

 User category (user: u, group: g, others: o, All: a)

 The operation to be performed (assign: +, remove: –, assign absolute permission: =)

 The type of permission (read: r, write: w, execute: x)

Now, consider the example of the file test taken before, and assign execute permission to it

as below –

$ chmod u+x test #assign(+) x(execute) to u(user)

$ ls –l test

Page 16 of 19

-rwxr--r-- 1 john richard 853 Sep 5 23:38 test

Now, the user john got permission to execute the file test. If you want to assign execute

permission on file test to group and others also, then use the command as –

$ chmod ugo+x test #assign(+) x to u(user, group, others)

$ ls –l test

-rwxr-xr-x 1 john richard 853 Sep 5 23:38 test

The string ugo can be replaced by a indicating all as shown below –

$ chmod a+x test #assign(+) x to a(all)

$ ls –l test

-rwxr-xr-x 1 john richard 853 Sep 5 23:38 test

When you are willing to assign a particular permission to all, then even the character a can

be omitted as below –

$ chmod +x test #assign(+) x to all

When same set of permissions has to be assigned to more than one file, then we can give

multiple files separated with space as –

$ chmod u+x test test1 test2

To remove a permission, the – (hyphen or minus) operator is used. For example, to remove

read permission from group and other, we can do as below –

$ ls –l test #check current status

-rwxr-xr-x 1 john richard 853 Sep 5 23:38 test

$ chmod go-r test #remove r permission from group & others

$ ls –l test #verify

-rwx—x--x 1 john richard 853 Sep 5 23:38 test

Multiple expressions separated by comma can be given to chmod command. For example,

to remove the execute permission from all and then to assign read permission to group and

others, a single statement can be used as –

$ chmod a-x, go+r test

$ ls –l test

-rw-r--r-- 1 john richard 853 Sep 5 23:38 test

More than one permission can also be set as below –

$chmod o+wx test

$ ls –l test

-rw-r--rwx 1 john richard 853 Sep 5 23:38 test

Here, write and execute permissions are set to others.

Absolute Permissions
Irrespective of existing permissions for a file, we may need to assign a new set of

permissions. That is, we wish to set all nine permission bits explicitly. This is known as

absolute permissions. For this purpose, chmod uses a string of three octal numbers.

Various permissions are given a specific digit as below –

 Read permission – 4

 Write permission – 2

 Execute permission – 1

Every possible combination of three different permissions is shown in binary representation

in Table 2.1.

Table 2.1 Digits used for absolute pathnames

Binary Octal Permission Significance

000 0 - - - No permission

001 1 - - x Execute only

010 2 - w - Write only

011 3 - wx Write and execute

100 4 r- - Read only

101 5 r – x Read and execute

110 6 rw- Read and write

111 7 rwx Read, write and execute

Now, let us see some examples of using the absolute permissions with the help of octal

digits.

Ex 1. Assigning read and write(4+2=6) permissions to all –

$ chmod 666 test

$ ls –l test

Page 17 of 19

-rw-rw-rw- 1 john richard 853 Sep 5 23:38 test

Ex 2. To remove the write permission from group and others:

$ chmod 644 test

$ ls –l test

-rw-r--r-- 1 john richard 853 Sep 5 23:38 test

Note that, there is nothing like removing some permission. It is just reassignment of new

set of permissions to all.

Ex 3. To assign all permissions to owner, read and write permissions to group and only

execute permission to others –

$ chmod 761 test

$ ls –l test

-rwxrw---x 1 john richard 853 Sep 5 23:38 test

Using chmod Recursively (–R)
The chmod command can be used to apply required permissions on all files (and files

within subdirectory) in a given directory. It is done using –R option as below –

$chmod –R a+x ShellPgms

This makes all files and subdirectories found in the tree-walk (starting from ShellPgms

directory, includes all files in subdirectories) executable by all users. One can provide

multiple directory and filenames for this purpose. If chmod has to be applied on home

directory tree, one can use any one of the following –

$chmod –R 755 . #works on hidden files also

$chmod –R a+x * #leaves out hidden files

9. Discuss the types of tests performed by the test command.

Evaluate a boolean expression setting the Exit Code to indicate a true or false result. This is used

to express the logic of the Control Constructs used for shell script programming.

Note from the synopsis that there are two ways to invoke test – either with the command or the

alternate form using square brackets. The square brackets have the advantage of giving a more

familiar look, but one must be careful to leave spaces between the brackets and the boolean

expression.

SYNOPSIS

test expression

[expression]

String Comparisons

-n string True if length of string is non-zero

-z string True if length of string is zero

string1 == string2 True if the strings are equal

string1 != string2 True if the strings are not equal

Much of shell script programming often relates to working with files and directories, so the

following boolean expressions are frequently used.

File Oriented Expressions

-a file True if the file exists

-b file True if the file exists and is a block-oriented special file

-c file True if the file exists and is a character-oriented special file

-d file True if the file exists and is a directory

http://faculty.salina.k-state.edu/tim/unix_sg/shell/variables.html#exit
http://faculty.salina.k-state.edu/tim/unix_sg/bash/control.html#control

Page 18 of 19

-e file True if the file exists

-g file True if the file exists and its “set group ID” bit is set

-p file True if the file exists and is a named pipe

-r file True if the file exists and is readable

-s file True if the file exists and has a size greater than zero

-t fd True if the file descriptor is open refers to the terminal

-u file True if the file exists and its “set user ID” bit is set

-w file True if the file exists and is writable

-x file True if the file exists and is executable

-O file True if the file exists and is owned the effective user ID of the user.

-G file True if the file exists and is owned the effective group ID of the user.

-L file True if the file exists and is a symbolic link

-N file True if the file exists and has been modified since it was last read

-S file True if the file exists and is a named socket

file1 -nt file2 True if file1 is newer than file2

file1 -ot file2 True if file1 is older than file2

file1 -ef file2 True if file1 and file2 have the same device and inode numbers

Numeric Comparisons:

Operator Meaning

-eq equal to

-ne not equal to

-gt greater than

-ge greater than or equal to

-lt less than

-le

less than or equal to

10. Describe the important features of the UNIX operating system
A Multiuser System: UNIX is basically a multiprogramming system. Here, either Multiple users

can run separate jobs or Singe user can run multiple jobs. In UNIX, many processes are running

simultaneously. And, the resources like CPU, memory and hard disk etc are shared between all

users. Hence, UNIX is a multiuser system as well. The Unix system breaks up one time unit into

several segments and each user is allotted one segment. At any point of time, the machine will be

doing the job of one user. When the allotted time expires, the job is temporarily suspended and

next user’s job is taken up. This process continues till all processes gets one segment each and

once again the first user’s job is taken up. The kernel does this task several times in one second

such a way that the users will never come to know about it and users cannot make out the delay in

between.

 A Multitasking System: Unix is a multitasking system, wherein a single user can run multiple

jobs concurrently. A user may edit a file, print a document on a printer and open a browser etc –

all at a time. In multitasking environment, a user can see one job running in the foreground and all

other jobs run in the background. The jobs can be switched between background and foreground;

they can be suspended or terminated.

 The Building-Block Approach: Unix is a collection of few hundred commands, each of which

is designed to perform one task. More than one command can be connected via the | (pipe)

symbol to perform multiple tasks. The commands which can be connected are called as filters

because, they filter or manipulate data in different ways. Many Unix tools are designed such a

way that the output of one tool can be used as input to another tool. For this reason, UNIX

commands do not generate lengthy or messy outputs. If a program is interactive, then user’s

response to it may be different. In such situations, the output of one command cannot be made as

input to another command. Hence, UNIX programs are not interactive.

 The UNIX Toolkit: Unix contains diverse set of applications like text manipulation utilities,

compilers and interpreters, networked applications, system administration tools etc. The Unix

kernel does many tasks with the help of these applications. Such set of tools are constantly

Page 19 of 19

varying with every release of UNIX. In every release, new tools are being added and old tools are

either removed or modified. Most of these tools are open-source utilities and the user can

download them and configure to run on one’s machine.

 Pattern Matching: Unix has very sophisticated pattern matching features. The character like *

(known as a metacharacter) helps in searching many files starting with a particular name. Various

characters from a metacharacter set of Unix will help the user in writing regular expressions that

will help in pattern matching.

Programming Facility: The Unix shell is a programming language as well. It provides the user

to write his/her own programs using control structures, loops, variables etc. Such programs are

called as shell scripts. Shell scripts can invoke Unix commands and they can control various

functionalities of Unix OS.

 Documentation: Unix provides a large set of documents to understand the working of every

command and feature of it. The man command can be used on an editor to get the manual about

any Unix command. Moreover, there are plenty of documents, newsgroups, forums and FAQ

(Frequently Asked Questions) files available on internet, where one can get any information about

Unix.

