

Internal Assessment Test 1 – November 2019

Sub:	Computer Organization							Code:	18MCA15
Date:	19-11-19	Duration:	90 mins	Max Marks:	50	Sem:	IA	Branch:	MCA

Note: Answer any full 5 questions. All questions carry equal marks.

Total marks: 50

Part-I

- 1. Convert the following:
 - (i) $(67.6875)_{10} = (?)_2$ iv) $(B65F)_{16} = (?)_{10}$
- (ii) $(75.62)8 = (?)_2$ iii) $(10110001101011)_2 = (?)_{16}$ v) $(306.D)_{16} = (?)_2$

(OR)

- 2. Perform the following operation
 - i)Using 9's & 10's complement subtract 5250 from 62567
 - ii) Using 1's & 2's complement subtract 1010111 from 11100111

Part-II

- 3. Using K-map simplify the Boolean Function
 - i) $F(w, x, y, z) = \sum (0, 1, 2, 4, 6, 8, 9, 12, 13, 14)$
 - ii) $F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + \sum (d(0, 2, 4) \text{ (with Don't care conditions)})$ (OR)
- 4. i) State the following Boolean laws- [closure, associate law, communicative law, identity law, inverse, distributive law]

N / L 1	U	DE
Marks	CO	RBT
10	CO1	L1
10	CO1	L1
10	CO2 CO3	L2
10	CO1	L1

CMR INSTITUTE OF TECHNOLOGY

USN	1	C				

Internal Assessment Test 1 – November 2019

Sub:		Computer Organization							19MCA14
Date:	18-11-19	Duration:	90 mins	Max Marks:	50	Sem:	IA	Branch:	MCA

Note: Answer any full 5 questions. All questions carry equal marks.

Total marks: 50

Part-I

- 1. Convert the following:
 - (ii) $(67.6875)_{10} = (?)_2$ iv) $(B65F)_{16} = (?)_{10}$
- (ii) $(75.62)8 = (?)_2$ iii) $(10110001101011)_2 = (?)_{16}$ v) $(306.D)_{16} = (?)_2$

(OR)

- 2. Perform the following operation
 - i)Using 9's & 10's complement subtract 5250 from 62567
 - ii) Using 1's & 2's complement subtract 1010111 from 11100111

Part-II

- 3. Using K-map simplify the Boolean Function
 - iii) $F(w, x, y, z) = \sum (0, 1, 2, 4, 6, 8, 9, 12, 13, 14)$

 $F(A, B, C, D) = \sum m(1,3,4,5,7,8,10,11,13,15) + \sum d(0,2,14)$ (Don't care conditions)

4. i) What is Digital Circuit? State the following Boolean laws- [closure, associate law, communicative law, identity law, inverse, distributive law]

		ORF				
	Marks	CO	RBT			
	10	CO1	L1			
	10	CO1	L1			
	10	CO2	L2			
		CO3				
	10	GO 1	7.1			
,	10	CO1	L1			

Part-III

5	i) Simplify using DeMorgan's Theorem and draw the circuit diagram : i. $((A+BC)'+(AB')')'$ ii. $((A'B)(BC')(C'D)(AC)')'$ iii. $(ABC')'+((AB)'C)'$ (OR)	10	CO2	L2
6.	Justify why NAND and NOR gates are known as universal gates. Derive all basic gates	10	CO2	L3
	using NAND gates			
	Part-IV			
7	State and Prove the DeMorgan's Theorem using Logic Circuit & Truth Table (OR)	10	CO1	L2
8	a)Explain about sum of product and product of sum simplification with example?	6	CO1	L2
	b) Explain about Maxterms and Minterms with an example.	4		
	Part-V			
9	Describe all logic gates with symbol, truth table and logic expression? (OR)	10	CO2	L2
10	Write Briefly explain K-Map and its advantages?	10	CO1	L2

Part-III

5	i) Simplify using DeMorgan's Theorem and draw the circuit diagram : i. $((A+BC)'+(AB')')'$ ii. $((A'B)(BC')(C'D)(AC)')'$ iii. $(ABC')'+((AB)'C)'$ (OR)	10	CO2	L2
6.	Justify why NAND and NOR gates are known as universal gates. Derive all basic gates	10	CO2	L3
	using NAND gates			
	Part-IV			
7	State and Prove the DeMorgan's Theorem using Logic Circuit & Truth Table (OR)	10	CO1	L2
8		6	CO1	L2
	b) Explain about Maxterms and Minterms with an example.	4		
	Part-V			
9	Describe all logic gates with symbol, truth table and logic expression? (OR)	10	CO2	L2
10	Write Briefly explain K-Map and its advantages?	10	CO1	L2