
CMR  
INSTITUTE OF                                      USN                             
TECHNOLOGY 

 

Internal Assessment Test 1 – September  2019 

 

 

                                       Answer any five of the following                                          5 x 10 = 50 Marks 

 

Q1 What is an algorithm? What are the characteristics of a good algorithm? Explain with example  of  GCD 

of two numbers             (5)   

Def : An algorithm is a sequence of unambiguous instructions for solving a problem. i.e., 
for obtaining a required output for any legitimate input in a finite amount of time.      

 
                  Figure : Notion of the Algorithm 
 
Characteristics of Algorithms:  

i) Finiteness:  
An algorithm must terminate after a finite number of steps and further each step must be 
executable in finite amount of time or it terminates (in finite number of steps) on all allowed 
inputs  

ii) Definiteness (no ambiguity):  
Each step of an algorithm must be precisely defined; the action to be carried out must be 
rigorously and unambiguously specified for each case. For example : an instruction such as 
y=sqrt(x) may be ambiguous since there are two square roots of a number and  the step does not 
specify which one.  

iii) Inputs:  
An algorithm has zero or more but only finite, number of inputs.  

iv) Output:  
An algorithm has one or more outputs. The requirement of at least one output is obviously 
essential, because, otherwise we cannot know the answer/ solution provided by the algorithm. 
The outputs have specific relation to the inputs, where the relation is defined by the algorithm.  

v) Effectiveness:  
An algorithm should be effective. This means that each of the operation to be performed in an 
algorithm must be sufficiently basic that it can, in principle, be done exactly and in a finite length 
of time, by person using pencil and paper. Effectiveness also indicates correctness, i.e. the 
algorithm actually achieves its purpose and does what it is supposed to do.  
Example:  

 
         

 

Sub: Design and Analysis of Algorithms Code: 18MCA33 

Date: 7-09-2019 Duration: 90 mins Max Marks:  50 Sem: III Branch: MCA 

 



Below is given the psuedocode of the algorithm to find the GCD of two numbers  

 
 
Considering the above algorithm it is finite. Though we do not offer a proof here, it can be seen 
that the pair of m and n after every step decreases. If we start with m and n as positive numbers 
then eventually the value of n has to reduce and become 0 thus guaranteeing termination and thus 
finiteness.  
Definiteness – Every step in this algorithm is well specified and has no ambiguity  
Inputs / Ouput – The algorithm has two inputs and one output – gcd.  
Effectiveness – Each step is presented in sufficient detail and the result is a correct computation of 
GCD.  
 
 

 

( 2) Explain the fundamental data structures used for designing algorithms.                               

A data structure can be defined as the logical or mathematical model of a particular organization 
of data. In otherwords,  An efficient way of storing and organizing data in the computer such as 
queue, stack, linked list and tree. 
Classification of Data structures: 

 
 

The two most important elementary data structure are the array and the linked list. Array is a 
sequence contiguously in computer memory and made accessible by specifying a value of the 
array’s index.  

 
Item [0]     item[1] - - -    item[n-1]  

 
Array of n elements. 

 

The index is an integer ranges from 0 to n-1. Each and every element in the array takes the same 
amount of time to access and also it takes the same amount of computer storage. 

 
Arrays are also used for implementing other data structures. One among is the string: a sequence 
of alphabets terminated by a null character, which specifies the end of the string. Strings 
composed of zeroes and ones are called binary strings or bit strings. Operations performed on 
strings are: to concatenate two strings, to find the length of the string etc. 



A linked list is a sequence of zero or more elements called nodes each containing two kinds 
of information: data and a link called pointers, to other nodes of the linked list. A pointer called 
null is used to represent no more nodes. In a singly linked list, each node except the last one 
contains a single pointer to the next element.  

item 0 item 1 ………………… item n-1 null 

Singly linked list of n elements.   

 

To access a particular node, we start with the first node and traverse the pointer chain until 
the particular node is reached. The time needed to access depends on where in the list the element 
is located. But it doesn’t require any reservation of computer memory, insertions and deletions 
can be made efficiently. 

 

There are various forms of linked list. One is, we can start a linked list with a special node 
called the header. This contains information about the linked list such as its current length, also a 
pointer to the first element, a pointer to the last element. 

 

Another form is called the doubly linked list, in which every node, except the first and the 
last, contains pointers to both its success or and its predecessor. 

 

The another more abstract data structure called a linear list or simply a list. A list is a finite 
sequence of data items, i.e., a collection of data items arranged in a certain linear order. The basic 
operations performed are searching for, inserting and deleting on element. 

 

Two special types of lists, stacks and queues. A stack is a list in which insertions and 
deletions can be made only at one end. This end is called the top. The two operations done are: 
adding elements to a stack (popped off). Its used in recursive algorithms, where the last- in- first- 
out (LIFO) fashion is used. The last inserted will be the first one to be removed. 

 

A queue, is a list for, which elements are deleted from one end of the structure, called the 
front (this operation is called dequeue), and new elements are added to the other end, called the 
rear (this operation is called enqueue). It operates in a first- in-first-out basis. Its having many 
applications including the graph problems. 

 

A priority queue is a collection of data items from a totally ordered universe. The principal 
operations are finding its largest elements, deleting its largest element and adding a new element. 
A better implementation is based on a data structure called a heap. 
Graphs: 

A graph is informally thought of a collection of points in a plane called vertices or nodes, 
some of them connected by line segments called edges or arcs. Formally, a graph G=<V, E > is 
defined by a pair of two sets: a finite set V of items called vertices and a set E of pairs of these 
items called edges. If these pairs of vertices are unordered, i.e. a pair of vertices (u, v) is same as (v, 
u) then G is undirected; otherwise, the edge (u, v), is directed from vertex u to vertex v, the graph 
G is directed. Directed graphs are also called digraphs. 

 

Vertices are normally labeled with letters / numbers 

 

A C B A C   B  
 
 
 

 



D 
 

E 
 

 F D E F 
  

1. (a) Undirected graph  1.(b) Digraph   

 

The 1st graph has 6 vertices and seven edges. 
 

V = {a, b, c, d, e,f }, 
E = {(a,c) ,( a,d ), (b,c), (b,f ), (c,e),( d,e ), (e,f) } 

 

The digraph has four vertices and eight directed edges: 

 

V = {a, b, c, d, e, f}, 
E = {(a,c), (b,c), (b,f), (c,e), (d,a), (d, e), (e,c), (e,f) } 

 

Usually, a graph will not be considered with loops, and it disallows multiple edges 
between the same vertices. The inequality for the number of edges | E | possible in an 
undirected graph with |v| vertices and no loops is : 

 

0 < = | E | < =| v | ( | V | - ) / 2. 

 

A graph with every pair of its vertices connected by an edge is called complete. Notation with 
|V| vertices is K|V| . A graph with relatively few possible edges missing is called dense; a graph 
with few edges relative to the number of its vertices is called sparse. 
 

 

Q3. Describe the various asymptotic notations with a neat diagrams and examples.                 

                            

Different Notations 
1. Big oh Notation 
2. Omega Notation 
3. Theta  Notation 

 
1. Big oh (O) Notation : A function t(n) is said to be in O[g(n)], t(n)  ∈ O[g(n)] , if t(n) is 

bounded above by some constant multiple of g(n) for all large n  ie.., there exist some 
positive constant c and some non negative integer no such that t(n) ≤ cg(n) for all n≥no.  

            Eg. t(n)=100n+5  express in O notation 
                           100n+5   < = 100n + n       for all n>=5  
                                           < =  101 (n2)  
                          Let g(n)= n2    ;   n0=5   ; c = 101 
         i.e     100n+5    <=101 n2 
                              t(n) <= c* g(n)   for all n>=5 
There fore  ,         t(n) ∈ O(n2) 
 



 
2. Omega(Ω) -Notation:  

Definition: A function  t(n) is said to be in Ω[g(n)], denoted   t(n)  ∈ Ω[g(n)] , if t(n) is bounded 
below by some positive constant multiple of g(n) for all large n, ie., there exist some positive 
constant c and some non negative integer n0  such that  
              t(n) ≥ cg(n) for all n ≥ n0.  
For example: 
              t(n) = n3  ∈ Ω(n2),  
               n3 ≥ n2   for all     n ≥ n0. 
   we can select, g(n)= n3  ,  c=1  and   n0=0  
                         t(n)  ∈ Ω(n2),  

                              
 

3. Theta (θ) - Notation:  
Definition: A function t(n) is said to be in θ [g(n)], denoted t(n) ∈ θ (g(n)), if t(n) is bounded both 
above and below by some positive constant multiples of g(n) for all large n ,  ie., if there exist some 
positive constant c1 and c2 and some nonnegative integer n0 such that c2g(n) ≤ t(n) ≤ c1g(n) for all   
n ≥ n0. 
For example 1:  
             t(n)=100n+5  express in θ notation 
                 100n <= 100n+5  <= 105n    for all n>=1 
             c1=100;     c2=105;  g(n) = n;   
            Therefore ,           t(n) ∈ θ (n) 
 

                 `  
 
Describe various Basic Efficiency classes 
 Sol: The time complexity of a large number of algorithms fall into only a few classes. These classes 
are listed in Table in increasing order of their orders of growth. Although normally we would 



expect an algorithm belonging to a lower efficiency class to perform better than an algorithm 
belonging to higher efficiency classes, theoretically it is possible for this to be reversed. For 
example if we consider two algorithms with orders (1.001)n and n1000. Then for lot of values of n 
(1.001)n would perform better but it is rare for an algorithm to have such time complexities.  

Class   Name   Comments  

 1   Constant   Constant time algorithm execute number of steps independent of 
input size/values. E.g. finding sum of two numbers.  

 logn   Logarithmic   Algorithms in this category are very ef 
ficient e.g. binary search.  

 n   Linear   Algorithms that scan a list of size n, eg., sequential search, finding 
the max/min element in an array etc.  

 nlogn   nlogn   Many divide & conquer algorithms including mergersort quicksort 
fall into this class.  

 n2   Quadratic   Characterizes with two embedded loops, mostly sorting and 
matrix operations. E.g. adding two square matrices, bubble sort.  

 n3   Cubic   Efficiency of algorithms with three embedded loops. For example : 
matrix multiplication , Floyd Warshall’s algorithms  

 2n   Exponential   Algorithms that generate all subsets of an n-element set .  

 n!   factorial   Algorithms that generate all permutations of an n-element set e.g. 
Travelling Salesman problems  

 
             Plot of function Values 

 

Q4.Write the algorithm for the Towers of Hanoi problem. Explain the solution with 3 disks.    

Solve the recurrence relation M(n) = 2 M(n-1)+1  for all n > 1    , M(1)=1.  

   Sol :  
In  Towers of Hanoi problem      We  have n disks of different sizes that can slide onto any of three 
pegs. Initially, all the disks are on the first peg in order of size, the largest on the bottom and the 
smallest on top. The goal is to move all the disks to the third peg, using the second one as an 
auxiliary, if necessary. We can move only one disk at a time, and it is forbidden to place a larger 
disk on top of asmaller one. 
 To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first move recursively n − 1 
disks from peg 1 to peg 2 (with peg 3 as auxiliary), then move the largest disk directly from peg 1 
to peg 3, and, finally, move recursively n − 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). 
Of course, if n = 1, we simply move the single disk directly from the source peg to the destination 
peg. 
Algorithm Towers( n,L,M,R) 

//Input  : No.of Disks n, three pegs L, M  & R 



//Output : the steps to move from L to  R 

Begin 

    If( n=1) 

         Print( ― Move disk from L to R‖) 

   Else  

       Towers( n-1,L,R,M) 

        Print( ― Move nth  disk from L to R‖) 

      Towers( n-1,M,L,R) 

End 

Analysis 

Let us apply the general plan outlined above to the Tower of Hanoi problem. 

The number of disks n is the obvious choice for the input’s size indicator, and so is 

moving one disk as the algorithm’s basic operation. Clearly, the number of moves 

M(n) depends on n only, and we get the following recurrence equation for it: 

M(n) = M(n − 1) + 1+ M(n − 1) for n > 1. 

With the obvious initial condition M(1) = 1, we have the following recurrence 

relation for the number of moves M(n): 

                    M(n) = 2M(n − 1) + 1 for n > 1, (2.3) 

                    M(1) = 1. 

We solve this recurrence by the same method of backward substitutions: 

                     M(n) = 2M(n − 1) + 1 sub. M(n − 1) = 2M(n − 2) + 1 

                              = 2[2M(n − 2) + 1]+ 1= 22M(n − 2) + 2 + 1 sub. M(n − 2) = 2M(n − 3) + 1 

                             = 22[2M(n − 3) + 1]+ 2 + 1= 23M(n − 3) + 22 + 2 + 1. 

The pattern of the first three sums on the left suggests that the next one will be 

24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get 

M(n) = 2iM(n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM(n − i) + 2i − 1. 

Since the initial condition is specified for n = 1, which is achieved for i = n − 1, we 

get the following formula for the solution to recurrence (2.3): 

M(n) = 2n−1M(n − (n − 1)) + 2n−1 − 1 

= 2n−1M(1) + 2n−1 − 1= 2n−1 + 2n−1 − 1= 2n − 1. 

 

       

 

Q5. Explain the methods to analyze recursive and non-recursive algorithms with examples.     

(10)   

                  

General Plan for Analyzing Efficiency of Nonrecursive Algorithms  
1. Decide on a parameter (or parameters) indicating an input's size.  
2. Identify the algorithm's basic operation. (As a rule, it is located in its innermost  
loop.)  
3. Check whether the number of times the basic operation is executed depends only  
on the size of an input. If it also depends on some additional property, the worst-  
case, average-case, and, if necessary, best-case efficiencies have to be  
investigated separately.  
4. Set up a sum expressing the number of times the algorithm's basic operation is  
executed.  
5. Using standard formulas and rules of sum manipulation either find a closed-form formula for 
the count or, at the very least, establish its order of growth. 



 
For example Consider the element uniqueness problem: check whether all the elements in 

a given array are distinct. This problem can be solved by the following straightforward algorithm.  
 

ALGORITHM UniqueElements(A[0..n - 1])  
//Checks whether all the elements in a given array are distinct  
//Input: An array A[0..n - 1]  
//Output: Returns "true" if all the elements in A are distinct  
// and "false" otherwise.  
for i «— 0 to n — 2 do  

     for j' <- i
: 
+ 1 to n - 1 do  

          if A[i] = A[j]  
                 return false  
return true  
 

Since the innermost loop contains a single operation (the comparison of two elements), we should 
consider it as the algorithm's basic operation. There are two kinds of worst-case inputs (inputs for 
which the algorithm does not exit the loop prematurely): arrays with no equal elements and 
arrays in which the last two elements are the only pair of equal elements. For such inputs, one 
comparison is made for each repetition of the innermost loop, i.e., for each value of the loop's 
variable j between its limits i + 1 and n - 1; and this is repeated for each value of the outer loop, 
i.e., for each value of the loop's variable i between its limits 0 and n - 2. Accordingly, we get: 

 

 
 
 

A General Plan for Analyzing Efficiency of Recursive Algorithms : 
 

1. Decide on a parameter (or parameters) indicating an input's size.  
2. Identify the algorithm's basic operation.  
3. Check whether the number of times the basic operation is executed can vary on different 

inputs of the same size; if it can, the worst-case, average-case, and best-case efficiencies must be 
investigated separately.  

4. Set up a recurrence relation, with an appropriate initial condition, for the  number of 
times the basic operation is executed.  
5. Solve the recurrence or at least ascertain the order of growth of its solution. 
 
For example: consider the recursive algorithm for finding factorial of a number 

ALGORITHM F(n)  
   // Computes n! recursively  
   // Input: A nonnegative integer n  
   // Output: The value of n!  
   If  n =0 return 1  
  else return F(n — 1) * n 
 
The basic operation is the multiplication which is performed once. There is one subproblem 



generated which is of size n-1, where  n is the size of the original problem. Thus if T(n) is the time 
to execute F(n) then the recurrence relation can be set up as 
 
T(n) = T(n-1)+1,     if, n>=1 
           1           ,    if n=0 
Solving this through back substitution: 
T(n) = T(n-1)+1 = T(n-2)+1+1= T(n-2)+2 = T(n-3)+1+2= T(n-3)+3 ….. T(n-i)+i 
 
The argument n-i  will become zero when n=i. Substituting this value in the equation above: 
T(n) = T(0)+n=1+n   (Since T(0) = )1 
 
Thus T(n) = θ(n) 

 

 

Q6. Explain Write the recursive algorithm and analysis of  the problem to count the number of digits in 

the binary representation of a decimal number.                                                                                                    

(10)      

Sol.  
The following algorithm finds the number of binary digits in the binary representation of a positive decimal 

integer. 

ALGORITHM Binary(n) 

//Input: A positive decimal integer n 

//Output: The number of binary digits in n’s binary representation 

count ←1 

while n > 1 do 

count ←count + 1 

n←_n/2_ 

return count 
Analysis 

First, notice that the most frequently executed operation here is not inside the while loop but rather the 

comparison n > 1 that determines whether the loop’s body will be executed. Since the number of times the 

comparison will be executed is larger than the number of repetitions of the loop’s body by exactly 1, the 

choice is not that important. A more significant feature of this example is the fact that the loop variable takes 

on only a few values between its lower and upper limits; therefore, we have to use an alternative way of 

computing the number of times the loop is executed. Since the value of n is about halved on each repetition 

of the loop, the answer should be about log2 n. The exact formula for the number of times the comparison 

n>1 will be executed is actually [log2 n]+ 1—the number of bits in the binary representation of n according 

to formula (2.1). We could also get this answer by applying the analysis technique based on recurrence 

relations; we discuss this technique in the next section because it is more pertinent to the analysis of 

recursive algorithms. 

 

     Q 7  Write the algorithm and analysis of  the element uniqueness problems. Explain with an example. 

Sol. 
Consider the element uniqueness problem: check whether all theelements in a given array of n 
elements are distinct. This problem can be solved by the following straightforward algorithm. 
 

ALGORITHM  UniqueElements(A[0..n − 1]) 
//Determines whether all the elements in a given array are distinct 

//Input: An array A[0..n − 1] 

//Output: Returns “true” if all the elements in A are distinct  

// and ―false‖ otherwise 
for i ←0 to n − 2 do 

for j ←i + 1 to n − 1 do 

if A[i]= A[j ] return false 



return true 

Analysis 

The natural measure of the input’s size here is again n, the number of elements in the array. Since the 

innermost loop contains a single operation (the comparison of two elements), we should consider it as the 

algorithm’s basic operation. Note, however, that the number of element comparisons depends not only on n 

but also on whether there are equal elements in the array and, if there are, which array positions they occupy. 

We will limit our investigation to the worst case only. By definition, the worst case input is an array for 

which the number of element comparisons Cworst(n) is the largest among all arrays of size n. An inspection 

of the innermost loop reveals that there are two kinds of worst-case inputs—inputs for which the algorithm 

does not exit the loop prematurely: arrays with no equal elements and arrays in which the last two elements 

are the only pair of equal elements. For such inputs, one comparison is made for each repetition of the 

innermost loop, i.e., for each value of the loop variable j between its limits i + 1 and n − 1; this is repeated 

for each value of the outer loop, i.e., for each value of the loop variable i between its limits 0 and n − 2. 

Accordingly, we get 

 
where the last equality is obtained by applying summation formula (S2). Note that this result was perfectly 

predictable: in the worst case, the algorithm needs to compare all n(n − 1)/2 distinct pairs of its n elements. 

 

     Q8. Explain the various stages of the algorithm design and analysis process with the help of a flowchart. 

               
Fig : Algorithm Design and Analysis Process 

1. Understanding the problem:  
Before designing algorithm, one should understand the problem correctly. This may require 



the problem to be read multiple times, asking questions if required and working out smaller 
instances of problem by hand.  Any input to an algorithm specifies an instance or event of the 
problem. So, it is very important to set the range of inputs so that the algorithm works for all 
legitimate inputs i.e   work correctly under all circumstances.. 
2. Ascertaining the capabilities of a computational Device:  
After understanding the problem, one must think of the machines that execute instructions. 
The machines that are capable of executing the instructions one after the other is known as 
sequential machines and  algorithms which run on these machines are known as sequential 
algorithms 
  Newer machines can run instructions concurrently re known as  parallel machines  and 
algorithms which have written for such machines are called parallel algorithms.  
If we are dealing with the small problems, we need not worry about the time and memory 
requirements. But some complex problems which involve processing large amounts of data in 
real time are required to know about the time and memory requirements where the program is 
to be executed on the machine. 
3. Choosing between exact and approximate problem solving:  

The algorithms which solves the problem and gives the exact solution is known as Exact  
Algorithm and one which gives approximate results is known as Approximation 
Algorithms. 

     There are two situations in which we may have to go for approximate solution:  
i)  If the quantity to be computed cannot be calculated exactly. For example finding 

square roots, solving non linear equations etc.  
ii)  Complex algorithms may have solutions which take an unreasonably long amount 

of time if solved exactly. In such a case we may opt for going for a fast but 
approximate solution.  

4. Deciding on data structures:  
Algorithms use different data structures for their implementation. Some use simple ones 
but some other may require complex ones. But, Data structures play a vital role in 
designing and analyzing the algorithms.  

5. Algorithm Design Techniques:  
   An algorithm design technique is a general approach to solving problems    

algorithmically that is applicable to a variety of problems from different areas of   
computing. These techniques will provide guidance in designing algorithms for   
new problems. Various design methods for algorithms exist, some of which are –  
divide and conquer, dynamic programming, greedy algorithms etc.  

6. Methods of specifying an Algorithm:  
Algorithm can be specified using natural language and  psuedocode. Due to the  inherent 
ambiguity of the natural language, the most prevelant method of specifying an algorithm is 
using psuedocode. 

7.  Proving an Algorithm’s correctness:  
Correctness has to be proved for every algorithm. To prove that the algorithm gives  the 
required result for every legitimate input in a finite amount of time. For some algorithms, a 
proof of correctness is quite easy; for others it can be quite complex. Mathematical Induction is 
normally used for proving algorithm correctness.  
8. Analyzing an algorithm:  
Any Algorithm must be analysed for its efficiency time and space . Time efficiency indicates 
how fast the algorithm runs; space efficiency indicates how much extra memory the algorithm 
needs. Another desirable characteristic is simplicity. A code which is simple reduces the effort 
in understanding and writing it and thus leads to less chances of error. Another desirable 
characteristic is generality. An algorithm can be general if it addresses a more general form of 
the problem for which the algorithm is to be designed and is able to handle all legitimate 
inputs.  
9. Coding an algorithm:  



Programming the algorithm by using some programming language. Formal verification by 
proof is done for small programs. Validity of large and complex programs is done through 
testing and debugging.  

 

 

Q9. Write an algorithm for Bubble  sort . Explain with an example  and derive the time complexity                                                     

Sol :  
Bubble sort is a sorting algorithm that works by repeatedly stepping through lists that need to 
be sorted, comparing each pair of adjacent items and swapping them if they are in the wrong 
order. This passing procedure is repeated until no swaps are required, indicating that the list 
is sorted. 
The algorithm for bubble sort is as follows: 

 
 

 
  
Analysis:  
The no of key comparisons is the same for all arrays of size n, it is obtained by a sum which is 
similar to selection sort. 

 



The no.of key swaps depends on the input. The worst case is same as the no.of key comparisons. 

 

 

Q10. Write an algorithm for Selection sort and derive the time complexity.                                                   

Sol. 
Selection sort is an algorithm that selects the smallest element from an unsorted list in each 
iteration and places that element at the beginning of the unsorted list. 

 

 

 
 

 
                             

 


