
Page 1 of 12

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 Answer Key– Sep. 2019

Sub: System Software Sub Code: 18MCA34 Branch: MCA

Date: 07/09/2019 Duration: 90 min’s Max Marks: 50 Sem III

Q1 a) Define system software? List and explain any four assembler directives with examples.

System Software consists of a variety of programs that support the operation of a computer. It makes
possible for the user to focus on an application or other problem to be solved, without needing to know
the details of how the machine works internally.
They are usually related to the architecture of the machine on which they are to run.
Example: Assembler, Compiler, text editor, loader and linkers etc.

Assembler Directives
In addition to the mnemonic machine instructions assembler uses following
assembler directives. These statements are not translated into machine instructions.
Instead they provide instructions to assembler itself.
1) START
START specify the name and starting address of the program.
Example: START 1000
2) END
Indicate the end of the source program and (optionally) specify the first
executable instruction in the program.
Example: END FIRST
3) BYTE
Generate character or hexadecimal constant, occupying as many bytes as
needed to represent the constant.
Example: BYTE X’F1’
4) WORD
Generate one-word integer constant
Example: THREE WORD 3
5) RESB
Reserve the indicate number of bytes for a data area.
Example: BUFFER RESB 4096
6) RESW
Reserve the indicate number of words for a data area.
Example: LENGTH RESW 1

Q1 b) Write general description of pass 1 and pass 2 for two pass assembler

 Pass 1 (define symbols)

 Assign addresses to all statements in the program

 Save the addresses assigned to all labels for use in Pass 2

 Perform some processing of assembler directives, (including those for address assignment, such as

BYTE and RESW

Page 2 of 12

Pass 2 (assemble instructions and generate object program)

 Assemble instructions (translate opcodes and look up addresses)

 Generate data values defined by BYTE, WORD etc.

 Perform processing of assembler directives not done during Pass 1

 Write the object program and the assembly listing

Q2 a) Differentiate between application software and system software.

System Software Application Software

Intended to support the

operation and use of the

computer

An application program is

primarily concerned with the

solution of some problem,

using the computer as tool

Focus is on the Computer system

and not on the application

The focus is on the

application not on the

computing system.

It depends on the structure of the

machine on which it is executed.

It does not depend on the

structure of the machine it

works

Ex. Operating system, Loader,

Linkers, assembler, compiler, text

editors etc.

Ex. Banking system,

Inventory system.

Q2 b) Write Simple object program format. (Header, Text, End Record)

The simple object program format contains three types of records: Header record,

Text record and end record. The header record contains the starting address and length. Text record

contains the translated instructions and data of the program, together with an indication of the

addresses where these are to be loaded.

The end record marks the end of the object program and specifies the address

where the execution is to begin.

The format of each record is as given below.

Header record:

Col 1 H

Col. 2-7 Program name

Col 8-13 Starting address of object program (hexadecimal)

Page 3 of 12

Col 14-19 Length of object program in bytes (hexadecimal)

Text record:

Col. 1 T

Col 2-7. Starting address for object code in this record (hexadecimal)

Col 8-9 Length off object code in this record in bytes (hexadecimal)

Col 10-69 Object code, represented in hexadecimal (2 columns per byte of object

code)

End record:

Col. 1 E

Col 2-7 Address of first executable instruction in object program

(hexadecimal)

Q3) Describe SIC (standard model) Machine Architecture.

1) Memory

 Memory consists of 8-bit bytes.

 3 consecutive bytes form a word (24 bits).

 All the address in SIC are byte addresses.

 Words are addressed by the location of their lowest numbered byte.

 There are total of 32,768 (215) bytes in the computer memory.

2) Registers
There are five registers,
each 24 bits in length.
Mnemonic

Number Use

A 0 Accumulator; used for
arithmetic operations

X 1 Index register; used for
addressing

L 2 Linkage register, the jump
to subroutine instruction
stores the return address in
this register.

PC 8 Program counter, contains
the address of the next
instruction to be fetched
for execution.

SW 9 Status word, contains a
variety of information,
including a Condition Code.

3) Data Formats
 Integers are stored as 24 bit binary numbers; 2‟s complement representation is used for negative values.
 Characters are stored using their 8-bit ASCII codes.

Page 4 of 12

 There is no floating point hardware on the standard version of SIC.

4) Instruction Formats
All machine instructions on the standard version of SIC have the following 24-bit format 8 1 15

opcode x address

 8 1 15

The flag bit x is used to indicate indexed addressing mode.

5) Addressing Modes

There are two addressing modes, indicated by the setting of the x bit in the instruction.

Mode Indication Target address calculation

Direct x = 0 TA = address

Indexed x = 1 TA = address + (x)

Parentheses are used to indicate the contents of a register or a memory location. For example, (X)
represents the contents of register X.

6) Instruction Set
SIC provides a basic set of instructions that are sufficient for most simple task.
i) Data transfer instruction: This include instructions that load and store registers. Eg. LDA, LDX, STA, STX.

ii) Arithmetic operation instruction: Basic arithmetic operations that involves register A Eg. ADD, SUB, MUL,
DIV, COMP.

iii) Conditional Branching: Conditional jump instructions test the settings of conditional code and jump
accordingly. Eg. JLT, JGT, JEQ.
iv) Subroutine call Instructions: Perform subroutine linkage. Eg. JSUB, RSUB. Return address is stored in
linkage(L) register.

7) Input and Output

 Input and Output are performed by transferring 1 byte at a time to or from the rightmost 8 bits of
register A (accumulator).

 Each device is assigned a unique 8bit code.

 There are 3 I/O instructions.

 The Test Device (TD) instruction tests whether the addressed device is ready to send or receive a byte of
data. Read Data (RD), Write Data (WD) are used for reading or writing the data.

Q4) Describe SIC/XE Machine Architecture.

1) Memory
 Memory consists of 8-bit bytes.
 3 consecutive bytes form a word (24 bits).
 All the address in SIC/XE are byte addresses.
 Words are addressed by the location of their lowest numbered byte.
 Maximum memory available on a SIC/XE system is 1 megabyte (220 bytes).

Page 5 of 12

 This increase leads to a change in instruction formats and addressing modes

2) Registers

Five registers of SIC machine remains same in SIC/XE. The additional registers provided by SIC/XE are as
follows.

Mnemonic Number Use
B 3 Base register; used for

addressing.
S 4 General working

register – no special
use.

T 5 General working
register – no special
use.

F 6 Floating-point
accumulator (48 bits).

3) Instruction Formats

 SIC/XE has larger memory hence instruction format of standard SIC version is no longer suitable.

 SIC/XE provide two possible options; using relative addressing (Format 3) and extend the address

field to 20 bit (Format 4).

 In addition SIC/XE provides some instructions that do not reference memory at all. (Format 1 and

Format 2) .

 The new set of instruction format is as follows. Flag bit e is used to distinguish between format 3

and format 4. (e=0 means format 3, e=1 means format 4)

1. Format 1 (1 byte)

 8

op

Example RSUB (return to subroutine)

 opcode

0100 1100

 4 C

2. Format 2 (2 bytes)

 8 4 4

op r1 r2

Example COMPR A, S (Compare the contents of register A & S)

 Opcode A S

1010 0000 0000 0100

Page 6 of 12

 A 0 0 4

3. Format 3 (3 bytes)

 6 1 1 1 1 1 1 12

op n i x b p e disp

Example LDA #3(Load 3 to Accumlator A)

0000 00 0 1 0 0 0 0 0000 0000 0011

 0 n i x b p e 0 0 3

4. Format 4 (4 bytes)

 6 1 1 1 1 1 1 20

op n i x b p e address

Example JSUB RDREC(Jump to the address, 1036)

0100 10 1 1 0 0 0 1 0000 0001 0000 0011 0110

 n i x b p e

4) Addressing Modes

Two new relative addressing modes are available for use with instructions assembled using Format 3

 Mode Indication Target address
calculation

Base Relative b=1, p=0 TA = (B) + disp (
0≤ disp ≤ 4095)

Program-counter
relative

b=0, p=1 TA = (PC)+disp (-
2048 ≤ disp ≤
2047)

b represents for base relative addressing where as p represents program counter relative addressing. If

both the bits b and p are 0 then target address is taken form the address field of the instruction (i.e

displacement)

SIC/XE also support addressing modes that are assembled using Format 4.

Mode Indication Target address
calculation

Direct b=0, p=0, x=0 TA = disp

Indexed x=1 TA = (x)+disp

Immediate i=1, n=0 TA = operand value

Indirect i=0, n=1 TA = address of
operand value

simple i=1, n=1 i=0, n=0 TA = location of the
operand value

6) Instruction Set

 SIC/XE provides all of the instructions that are available on the standard version.

Page 7 of 12

 In addition we have, Instructions to load and store the new registers LDB, STB, etc,

 Floating-point arithmetic operations, ADDF, SUBF, MULF, DIVF,

 Register move instruction : RMO,

 Register-to-register arithmetic operations, ADDR, SUBR, MULR, DIVR and,

 Supervisor call instruction : SVC

7) Input and Output

 There are I/O channels that can be used to perform input and output while the CPU is executing
other instructions.

 Allows overlap of computing and I/O, resulting in more efficient system operation.

 The instructions SIO, TIO, and HIO are used to start, test and halt the operation of I/O channels.

Q5) Write pass 1 Algorithm for pass two assembler

Page 8 of 12

Q6) Write pass 2 Algorithm for pass two assembler

Q7 a) Give the target address generated for following machine instruction.

 if (B)=006000 (PC)=003000 (x)=000090 i)75101000 ii)032026

i)75101000

Page 9 of 12

000110 1 0 0 0 1 0 0000 0000 0000

TA= operand value

TA = 01000

ii) 032026

000000 1 1 0 0 1 0 0000 0010 0110

TA= disp+(PC)

TA= 026+003000

TA=3026

Q7 b) Write a program for SIC/XE machine to copy a string “SYSTEM SOFTWARE” from LOC1 to

LOC2

 LDT #15

 LDX #0

 MOVECH LDCH LOC1,X

 STCH LOC2,X

 TIXR T

 JLT MOVECH

 LOC1 BYTE C’SYSTEM SOFTWARE’

 LOC2 RESB 15

Q8 a) Write a program for SIC machine to perform BETA = BETA / 5 + 4

 LDA BETA

 DIV FIVE

 ADD FOUR

 STA BETA

 FIVE WORD 5

 FOUR WORD 4

Q8 b) Give the target address generated for following machine instruction.

 if (B)=006000 (PC)=003000 (x)=000090 i)03C300 ii)0310C303 iii)010030

i) 03C300

Page 10 of 12

000000 1 1 1 1 0 0 0011 0000 0000

TA=disp + (x) + (b)

TA= 6390

ii) 0310C303

000000 1 1 0 0 0 1 0000 1100 0011 0000 0011

TA= C303

iii) 010030

000000 0 1 0 0 0 0 0000 0011 0000

TA = 30

Q9 a) List and describe data structures used by two-pass assembler

1) OPTAB:

 It is used to lookup mnemonic operation codes and translates them to
their machine language equivalents.

 In more complex assemblers the table also contains information about
instruction format and length

 In pass 1 the OPTAB is used to look up and validate the operation
code in the source program.

 In pass 2, it is used to translate the operation codes to machine
language.

 In simple SIC machine this process can be performed in either in pass
1 or in pass 2.

 But for machine like SIC/XE that has instructions of different lengths,
we must search OPTAB in the first pass to find the instruction length
for incrementing LOCCTR.

 In pass 2 we take the information from OPTAB to tell us which
instruction format to use in assembling the instruction, and any
peculiarities of the object code instruction.

 OPTAB is usually organized as a hash table, with mnemonic
operation code as the key.

 The hash table organization is particularly appropriate, since it
provides fast retrieval with a minimum of searching.

 Most of the cases the OPTAB is a static table- that is, entries are not
normally added to or deleted from it. In such cases it is possible to
design a special hashing function or other data structure to give
optimum performance for the particular set of keys being stored.
2) SYMTAB:

 This table includes the name and value for each label in the source
program, together with flags to indicate the error conditions (e.g., if a
symbol is defined in two different places).

 During Pass 1: labels are entered into the symbol table along with
their assigned address value as they are encountered. All the symbols
address value should get resolved at the pass 1.

Page 11 of 12

 During Pass 2: Symbols used as operands are looked up the symbol
table to obtain the address value to be inserted in the assembled
instructions.

 SYMTAB is usually organized as a hash table for efficiency of
insertion and retrieval. Since entries are rarely deleted, efficiency of

deletion is the important criteria for optimization.
3) LOCCTR:

 Apart from the SYMTAB and OPTAB, this is another important
variable which helps in the assignment of the addresses.

 LOCCTR is initialized to the beginning address mentioned in the
START statement of the program.

 After each statement is processed, the length of the assembled
instruction is added to the LOCCTR to make it point to the next
instruction.

 Whenever a label is encountered in an instruction the LOCCTR value
gives the address to be associated with that label.

Q9 b) Generate object code for the given SIC program

 OPCODES: LDA - 00 ADD – 18 STA - 0C

 START 0

0000 FIRST LDA FIVE 000015

0003 STA ALPHA 0C001B

0006 LDA TWO 000018

0009 STA BETA 0C001E

000C LDA ALPHA 00001B

000F ADD BETA 18001E

0012 STA RESULT 0C0021

0015 FIVE WORD 5

0018 TWO WORD 2

001B ALPHA RESW 1

001E BETA RESW 1

0021 RESULT RESW 1

Q 10) Explain following with example
 i) LDA ii) TIX

i) LDA

LDA is a mnemonic that stands for LoaD Accumulator with the contents from memory.
 Eg. LDA ALPHA

ii) TIX
Increments the index register and then compare the index register with the given operand

Eg TIX ELEVEN

Page 12 of 12

Q10 b) Generate object code for the given SIC/XE program

OPCODES: LDA-00 STX-10 LDX-04 LDS-6C ADDR-90 STA-0C

 QUIZ START 1000

1000 FIRST LDA

#3 010003

1003 STX THREE 102011

1006 LDX #0 070000

1009 +LDS THREE 6F300A

100D ADDR A,X 9001

1010 +STA RESULT,X 0FB000

1014 RESULT RESW 1

1017 THREE RESW 1

101A END

FIRST

