
CMR
INSTITUTE OF
TECHNOLOGY

USN 1 C

Internal Assessment Test 1 – September 2019- Answer Key

Total Marks: 50

Marks
OBE

CO RBT

1.
PART-1

What is pattern? Write the categories of pattern in detail.

Pattern is a kind of an expert behavior. Experts works on a particular problem every
time will not get a distinct solution, Recall a similar problem, and reuse the essence
of its solution to solve it.

Each pattern is a 3 – part rule:
A relation between a certain context
A problem
A solution

Each pattern is a relationship a context, a system of forces which occurs repeatedly
in that context.

Each pattern is an instruction which helps for re-usability, a relevant context and to
resolve systems of forces.

Each pattern is both a process and thing.

Pattern categories :
Architectural
Design Patterns
Idioms

Architectural Patterns: – Expresses a fundamental structural organizational schema
for software system. It provides a set of pre-defined subsystem specify their
responsibilities and includes rules and guidelines for organizing the relationship
between them.

Design Pattern: A design pattern provides schema for refining the
subsystems/components of a software system or relationship between them.

Idioms: An idiom is a low level pattern specific to a programming language. Idioms
deals with the implementation of particular design pattern

(OR)

10 CO5 L2

2 Describe the pattern description template in detail.

Name: The name and a short summary of the patterns.
Also Known as: Other names for the patterns
Example: A real-world example demonstrating the existence of the problem.
Context: a situation in which the pattern may apply.
Problem: The problem the pattern addresses, including a discussion

10 CO5 L2

Sub: Object Oriented Modeling and Design Patterns Code: 17MCA51

Date: 21-09-19 Duration: 90 mins
Max

Marks: 50 Sem: V A & B Branch: MCA

Solution: The fundamental solutions principles underlying the pattern.
Structure: A detailed specification of the structural aspects of the pattern.

3.
PART-II

Explain the Client Dispatcher Server design pattern in detail

Provides transparent inter-process communication for software systems in

which the distribution of components is not known at compile time i.e may

vary dynamically at run-time. This pattern allows peer to migrate to other

locations at run-time by unregistering and re-registering with the dispatcher.

This pattern provides an intermediate layer between clients and servers

called as dispatcher. The pattern provides location transparency by means of

a name service. The pattern hides the details of the establishment of the

communication connection between clients and servers.

Dispatcher implements a name service to allow clients to refer the servers by

names instead of physical location. Dispatcher is responsible for establishing

a communication channel between a client and a server.

Each server is uniquely identified by name and is connected to client by

dispatcher. Clients rely on dispatcher to locate a particular server and

connect. The roles of the server and client can change dynamically.

Structure

1> Before sending a request to a server, the client gets information from
dispatcher for communication channel.

2> Servers provide set of operations to clients.

3> Server registers itself OR is registered with the dispatcher by its name
and address.

4> The server component can be located on same computer as a client or
may be reachable via a network.

5> The dispatcher establishes a communication link to server using

available communication mechanism and returns a communication

handle to the client.

6> Dispatcher implements registering of servers.

(OR)

10 CO5 L3

4. Briefly write about the structure and dynamics of Forwarder Receiver design
Pattern

Peer pattern

1) Continuously monitor network events and resources.

2) Listen for incoming messages from remote agents.

3) Each agent may connect to any other agent to exchange information and
requests.

4) The network management infrastructure connects the network

10 CO5 L3

administrator’s console with all other agents.

5) Administrators may send requests to network agents or retrieve
messages from them by using available network administration tools.

Forwarder pattern

1) Sends messages across process boundaries

2) Provides a general interface that is an abstraction of a particular IPC
mechanism.

3) Includes functionality for marshaling and delivery of messages.

4) Contains a mapping from names o physical addresses.

5) Determines the physical location of the recipient by using its name-to-
addresses mapping.

6) In the transmitted message, he forwarder specifies its own peer, so that
remote peer is able to send a response to the message originator.

Receiver pattern

1) Wait for incoming messages on behalf of their agent process.

2) As soon as the message arrives, they convert the received data stream

into a general message format and forward the message to their agent

process.

Class: Collaborators

peer Forwarder

Responsibility Receiver
Provides
application
services.
Communicates
with other peers.

5.

PART-III

What are the various stages of Object Oriented Methodology in software
development?

The major phases of software development using object–oriented methodology are
object-oriented analysis, object-oriented design, and object-oriented
implementation.

Object–Oriented Analysis

In this stage, the problem is formulated, user requirements are identified, and then
a model is built based upon real–world objects. The analysis produces models on
how the desired system should function and how it must be developed. The models
do not include any implementation details so that it can be understood and

10 CO1 L3

examined by any non–technical application expert.

Object–Oriented Design

Object-oriented design includes two main stages, namely, system design and object
design.

System Design

In this stage, the complete architecture of the desired system is designed. The
system is conceived as a set of interacting subsystems that in turn is composed of a
hierarchy of interacting objects, grouped into classes. System design is done
according to both the system analysis model and the proposed system architecture.
Here, the emphasis is on the objects comprising the system rather than the
processes in the system.

Object Design

In this phase, a design model is developed based on both the models developed in
the system analysis phase and the architecture designed in the system design phase.
All the classes required are identified. The designer decides whether −

∑ new classes are to be created from scratch,

∑ any existing classes can be used in their original form, or

∑ new classes should be inherited from the existing classes.

The associations between the identified classes are established and the hierarchies
of classes are identified. Besides, the developer designs the internal details of the
classes and their associations, i.e., the data structure for each attribute and the
algorithms for the operations.

Object–Oriented Implementation and Testing

In this stage, the design model developed in the object design is translated into
code in an appropriate programming language or software tool. The databases are
created and the specific hardware requirements are ascertained. Once the code is in
shape, it is tested using specialized techniques to identify and remove the errors in
the code.

6 a Describe the object oriented themes.

∑ Abstraction

Abstraction consists of focusing on the essential, inherent aspects of an
entity and ignoring its accidental aspects.

∑ Classes and instances

Objects are instances of classes. A class is a definitive Description of a
group of objects with similar properties and behaviors. Classes are abstract,
objects are concrete. Objects are aware of their class identity.

∑ Encapsulation

Encapsulation (also information hiding) consists of separating the external
aspects of an object, which are accessible to other objects, from the internal
details of the object, which are hidden from other objects.

Objects have an outside (how they are seen or interact) and an inside (what
they are.)

∑ Polymorphism

Polymorphism is the kindred to the incorporation of data and behavior. From
the outside, the same operation Solve or Draw applies to various objects
(solvable or, respectively, drawable). The object user is not burdened with
the implementation - the inside - of the object. The object knows how to do
the job.

∑ Inheritance

Inheritance is a mechanism for sharing similarities among classes while
preserving their differences.

5 CO1 L2

b Write short notes on the various modeling techniques.

The different types of modeling techniques are:
i) Class Model: It describes the structure of objects in a system – their
identity, their relationships to other objects, their attributes and their operations.
The goal of constructing the class model is to capture those concepts from the
real world that are important to an application. Class diagram express the class
model.
ii) State Model: It describes those aspects of objects concerned with time and
the sequencing of operations – events that mark changes, state that define the
context for events, and the organization of events and states. State diagram
expresses the state model.
iii) Interaction Model: It describes interactions between objects – How
individual objects collaborate to achieve the behavior of the system as a whole.
Use case, sequence diagram and activity diagram documents the interaction
model.

5 CO1 L2

7
PART-IV

Describe the following terms with suitable example
10 CO1 L2

Ordering
Multiplicity
Generalization
Bags & Sequence

• Ordinary a binary association has at most one link for a pair of objects
• However we can permit multiple links for a pair of objects by annotating an

association end with {bag} or {sequence}
• A bag is a collection of elements with duplicates allowed.
• A sequence is an ordered collection of elements with duplicates allowed

• It specifies the number of instances of one class that may relate to a single
instance of the associated class.

• UML diagrams explicitly list multiplicity at the end of association lines.
• Intervals are used to express multiplicity:

– 1 (exactly one)
– 0..1 (zero or one)
– 1..* (one or more)
– 0..* (zero or more)
– 3..5 (three to five inclusive)

• Generalization is the relationship between a class (superclass) and one or
more variations of the class (subclasses).

• Generalization organizes classes by their similarities and their differences,
structuring the descriptions of objects.

• A superclass holds common attributes, attributes and associations.
• The subclasses adds specific attributes, operations, and associations. They

inherit the features of their superclass.
• Often Generalization is called a “IS A” relationship
• Simple generalization organizes classes into a hierarchy.
• A subclass may override a superclass feature (attribute default values,

operation) by redefining a feature with the same name.
• Never override the signature of methods.

(OR)
8 Explain the links and association with example

Link is an instance of an association. It is a tuple with one value for the
each end of the association, where each value is an instance of the type
of the end.
Association is reference based relationship between two classes. Here a
class A holds a class level reference to class B. Association can be
represented by a line between these classes with an arrow indicating the
navigation direction. In case arrow is on the both sides, association has
bidirectional navigation.

10 CO1 L2

9

PART-V

Explain the structure and dynamics of publisher – subscriber design pattern

Push-model Pull model

Publisher sends all changed data Publisher only sends the minimal

when it notifies the subscriber. information when sending a

change notification.

The subscribers have no choice about Subscribers are responsible for

if and hen they want to retrieve the retrieving the data they need.

data.

Very rigid dynamic behavior. Model is Offers more flexibility by more

not suitable for complex data messages between publisher and

changes. subscribers.

Even pushing a package description is Data changes are found. The

a overhead. process of finding data changes is

organized as a decision tree.

This model is best suited when The model is used when only the

subscribers need the published individual subscribers can decide

information most of the time. if and when they need a specific

piece of inf rmati n.

(OR)

10 CO5 L4

10 Demonstrate Whole-Part design pattern in detail

The Whole-Part design pattern helps with the aggregation of components that
together form a semantic unit. to the Parts is not An aggregate component, the

10 CO5 L4

Whole, encapsulates it constituent components, the Parts, organizes their
collaboration, and provides a common interface to its functionality. Direct access
possible.

∑ Sometimes called Composite
∑ Helps with the aggregation of components (parts) that together form

a semantic unit (whole).
∑ Direct access to the Parts is not possible
∑ Compose objects into tree structures to represent part-whole

hierarchies.

∑ Whole-Part lets clients treat individual objects and compositions of
object uniformly

∑ Supported in OO Programming Language

∑ Whole-Part is part of why OOP design the way it is

∑ Remember to read the text book

Example

∑ Graphics applications, like drawing editors, let users build complex
diagrams out of simple components. For example, a graph might
contain lines, rectangles, texts, pictures

∑ The user can group components to form larger components, which
in turn can be grouped to form still larger components

∑ A simple implementation could define classes for graphical
primitives such as Text and Lines plus other classes that act as
containers for these primitives

∑ Computer-Aided Design (CAD)

∑ Java Beans

∑ DevPack

∑ GL, OpenGL ?

Context

∑ Implementing aggregate objects

Problem

∑ A complex object should either be decomposed into smaller objects
or composed of existing objects, to support reusability,
changeability and the recombination of the constituent objects in
other types of aggregate

∑ Clients should see the aggregate object as an atomic object that does
not allow any direct access to its constituent parts

∑ Code that uses these classes must treat primitive (Text, Lines, etc.)
and container (Graphic) objects differently

∑ Having to distinguish these objects makes the application more
complex.

Solution

∑ Use a component that encapsulates smaller objects, and prevents
clients from accessing these constituent parts directly

∑ Use an interface as the only means of access to the functionality of
the encapsulated objects (appear as a semantic unit)

∑ An assembly-parts relationship differentiates between a product and
its parts or subassemblies

∑ A container-contents relationship

∑ A collection-members relationship helps to group similar objects -
such as an organization and its members

Structure

∑ Two types of participant

∑ Two CRC cards

Class: Whole

Responsibility:

∑ Aggregates several smaller objects
∑ Provides services built on top of part objects
∑ Acts as a wrapper around its constituent parts

Collaborators: Part

Class: Part

Responsibility:

∑ Pepresents a particular object and its services

Collaborators: -

