
CMR
INSTITUTE OF
TECHNOLOGY

Internal Assessment Test 1 – Sep. 2019

Sub: Programming Using C# and .Net Sub Code:
17MCA
52

Date: 21/09/2019 Duration: 90 min’s
Max

Marks:
50 Sem 5th Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I
MA
RK
S

OBE

CO RBT

1 Explain the Benefits and architecture of .NET framework.

The latest version of .NET framework provides:
 In developing portable, scalable, and robust applications.

 Developed applications can be executed in a distributed environment.

1.4 Components of .NET Framework 4.0:

The .NET Framework provides all the necessary components to develop and run an
application. The components of .NET Framework 4.0 architecture are as follows:

 Common Language Runtime (CLR)

 Common Type System (CTS)

 Metadata and Assemblies

 .NET Framework class library

 Windows Forms

 ASP.NET and ASP.NET AJAX

 ADO.NET

 Windows Workflow Foundation

 Windows Presentation Foundation

 Windows Communication Foundation

 Windows CardSpace

 LINQ

Let’s now discuss about each of them in detail.
1.5 CLR[Common Language Runtime]:

“CLR is an Execution Engine for .NET Framework applications”.

CLR is a heart of the.NET Framework. It provides a run-time environment to run the
code and various services to develop the application easily.

The services provided by CLR are –

[10]

CO1
L1

USN

 Memory Management

 Exception Handling

 Debugging
 Security

 Thread execution
 Code execution

 Language Integration

 Code safety
 Verification

 Compilation

The following figure shows the process of compilation and execution of the code by
the JIT Compiler:

i. After verifying, a JIT [Just-In-Time] compiler extracts the metadata from the file
to translate that verified IL code into CPU-specific code or native code. These
type of IL Code is called as managed code.

ii. The source code which is directly compiles to the machine code and runs on the
machine where it has been compiled such a code called as unmanaged code. It
does not have any services of CLR.

iii. Automatic garbage collection, exception handling, and memory management are
also the responsibility of the CLR.

Managed Code: Managed code is the code that is executed directly by the CLR. The
application that are created using managed code automatically have CLR services,
such as type checking, security, and automatic garbage collection.
The process of executing a piece of managed code is as follows:

 Selecting a language compiler

 Compiling the code to IL[This intermediate language is called managed code]

 Compiling IL to native code Executing the code
Unmanaged Code: Unmanaged Code directly compiles to the machine code and
runs on the machine where it has been compiled. It does not have services, such as
security or memory management, which are provided by the runtime. If your code is
not security-prone, it can be directly interpreted by any user, which can prove
harmful.

Automatic Memory Management: CLR calls various predefined functions of .NET
framework to allocate and de-allocate memory of .NET objects. So that, developers
need not to write code to explicitly allocate and de-allocate memory.

1.6 CTS [Common Type Specifications]:

The CTS defines the rules for declaring, using, and managing types at runtime. It is
an integral part of the runtime for supporting cross-language communication.

The common type system performs the following functions:

 Enables cross-language integration, type safety, and high-performance code
execution.

 Provides an object-oriented model for implementation of many programming
languages.

 Defines rules that every language must follow which runs under .NET
framework like C#, VB.NET, F# etc. can interact with each other.

The CTS can be classified into two data types, are
i. Value Types

ii. Reference Type

2 What is an Assembly? Describe the information stored in assembly manifest by
differentiating and Multiple assemblies.

Assemblies can stored in two types:

Static assemblies: Static assemblies include interfaces, classes and resources. These
assemblies are stored in PE (Portable executable) files on a disk.

Dynamic assemblies: Dynamic assemblies run directly from the memory without
being saved to disk before execution. However, after execution you can save the
dynamic assemblies on the disk.

Global Assembly Cache:

The Global Assembly Cache (GAC) is a folder in Windows directory to store the
.NET assemblies that are specifically designated to be shared by all applications
executed on a system.

 The assemblies must be sharable by registering them in the GAC, only when

needed; otherwise, they must be kept private.
 Each assembly is accessed globally without any conflict by identifying its

name, version, architecture, culture and public key.

You can deploy an assembly in GAC by using any one of the following:

 An installer that is designed to work with the GAC
 The GAC tool known as Gacutil.exe
 The Windows Explorer to drag assemblies into the cache.

Strong Name Assembly:

A Strong Name contains the assembly’s identity, that is, the information about the
assembly’s name, version number, architecture, culture and public key.

 Using Microsoft Visual Studio .NET and other tools, you can provide a strong
name to an assembly.

 By providing strong names to the assembly, you can ensure that assembly is
globally unique.

[10]
 CO1 L2

Private and Shared Assembly:

A single application uses an assembly, then it is called as a private assembly.

Example: If you have created a DLL assembly containing information about your
business logic, then the DLL can be used by your client application only. Therefore,
to run the application, the DLL must be included in the same folder in which the
client application has been installed. This makes the assembly private to your
application.

Assemblies that are placed in the Global Assembly cache so that they can be used by
multiple applications, then it is called as a shared assembly.

Example: Suppose the DLL needs to be reused in different applications. In this
scenario, instead of downloading a copy of the DLL to each and every client
application, the DLL can be placed in the global assembly cache by using the
Gacutil.exe tool, from where the application can be accessed by any client
application.

Side-by-Side Execution Assembly:

The process of executing multiple versions of an application or an assembly is
known as side-by-side execution. Support for side-by-side storage and execution of
different versions of the same assembly is an integral part of creating a strong name
for an assembly.

 Strong naming of .NET assembly is used to provide unique assembly identity
by using the sn.exe command utility.

 The strong-named assembly’s version number is a part of its identity, the
runtime can store multiple versions of the same assembly in the GAC.

 Load these assemblies at runtime.

3 With a neat diagram explain the workflow of .NET execution engine.

The following figure summarizes the workflow between a .NET source code, a
.NET compiler, and the .NET execution engine:

[10] CO1 L2

Figure 1.2: .NET Execution Engine

The .NET execution
process completes as
given below:

iii. When you compile
source code by selecting
.NET aware compilers such as Visual
Basic, C#, Visual C++, J#, or any of
the third party compilers, such as
COBOL, Perl or Eiffel.

iv. The .Net aware
compiler converts source code in to
binaries that are called as assemblies.
The assembly can be either *.dll or
*.exe depending on the entry point
defined in the application.

v. Assembly contains IL
code, Metadata and Manifest data.

NOTE: IL(Intermediate Language)
code is also known as
MSIL(Microsoft IL) / CIL(Common
IL) has a machine-readable
instruction sets.

vi. Then loaded IL code must be converted to Platform-specific code by a Just-
in-Time(JIT) compiler at runtime.

vii. Base class Library (mscorlib.dll): This library encapsulates various
primitives such as file IO, Data Access, Threading, XML/SOAP etc. When
building .NET binaries you always make use of this particular assembly.

4 Bring out the difference between value types and reference types and also write a
program for boxing and unboxing.

[10]
CO1 L2

5
Write a c# program to explain accessor and mutator used in
Encapsulation.

Rather than defining the data in the form of public, we can declare those fields as
private so that we achieved encapsulation. The Private data are manipulated using
accessor (get: store the data to private members) and mutator (set: to interact
with the variable) methods.

Syntax:

Note: Keep in mind about property
 Although you don’t have to have both a getter and a setter, you must have one

of the two.
 A property defined with both a getter and a setter is called a read-write

property.
 A property defined with only a getter is called a read-only property.
 A property defined with only a setter is called a write-only property.

The Private data are manipulated indirectly by two ways.

i. Traditional accessor and mutator methods. ii. Named property

i.The first method is, if we want the outside world to interact with private usn
data field, tradition

[10]

CO2 L3

set { <accessor-body> }
get { <accessor-body> }

Vale Types Reference
Types

Allocated on stack Allocated on heap

variable contains the data itself
variable contains the address of memory
location where data is actually stored

When we copy a value type variable
to another one, the actual data is
copied and each variable can be
independently manipulated.

When copying a reference type variable to
another variable, only the memory address is
copied. Both variables will still point to the
same memory location, which means, if we
change one variable, the value will be changed
for the other variable too.

Integer, float, boolean, double etc
are value types.

string and object are reference types.

Derived from System.ValueType Derived from System.Object

dictates defining an accessor (get method) and mutator (set method).

Example 2.1: In this application, we have defined two methods set() and
get(). The set() method mutator, set the value of usn variable. The
get() method accessor, displays the value of the usn variable on the
command prompt.

using System;
namespace Chapter4_Examples { class Student {

string name, branch,usn;
public void setusn(string sid){ usn = sid;
}
public string getusn(){ return usn;
}

}
class GetSetDemo { static void Main(){

Student st1 = new Student();
st1.setusn("1RX12MCA01"); Console.WriteLine("USN: "

+st1.getusn()); Console.ReadKey();
}

}
}

6 How do you prevent inheritance using sealed classes? Explain with an Example.

The next pillar of OOP, Inheritance provides you to reuse existing code and fast
implementation time. The relationship between two or more classes is termed as
Inheritance.

In essence, inheritance allows to extend the behavior of a base (or parent/super)
class by enabling a subclass to inherit core functionality (also called a derived
class/child class). All public or protected variables and methods in the base class
can be called in the derived classes.

Inheritance comes in two ways:

 Classical inheritance (“is-a” relationship)

 Containment/delegation model (“has-a” relationship).

using System;
namespace Chapter4_Examples{ class Animal

{
public Animal(){ Console.WriteLine("Base class

constructor");
}
public void Greet(){ Console.WriteLine("Hello,I am kind of

Animal");
}

[10] CO2 L3

}
class Dog : Animal{ public Dog()
{

Console.WriteLine("Derived class constructor");
}

}
class isademo{ static void Main(){

Dog d = new Dog(); d.Greet(); Console.ReadKey();
}

}
}

Sealed Class:-

Sealed classes are classes that cannot be inherited. You can use the “sealed”
keyword to define a class as a sealed class.

Syntax:

sealed class <Class_name>{

// data mebers and member functions

}

sealed class MyClass{
. . . // data mebers public void GetDetail(){

//Code
}
public void ShowDetail(){

//Code
}

}
Class MainClass{

//Instantiation of myclass class
//Method calling

}

7
Explain partial Classes and Partial Methods with the help of a program.

[10]
CO2 L3

8 What is Polymorphism? Write a c# program to explain Method Overloading.

The final pillar of OOP is polymorphism. Polymorphism means “one name many
forms”.

Polymorphism defined as “one object behaving as multiple forms and one function

behaves in different forms”. In other words, “Many forms of a single object is called

Polymorphism”.

Advantages:

[10]
CO2 L3

sealed class <Class_name>{

// data mebers and member functions

}

 Allows you to invoke methods of a derived class through base class
reference during runtime

 Provides different implementations of methods in a class that are

called through the same name There are two types of polymorphism, which

are as follows:

i. Static polymorphism/Compile Time polymorphism/Early
Binding/Overloading

ii. Dynamic polymorphism/Run-time polymorphism/Late Binding/Overriding
i. Method overloading:

In method overloading, can be define many methods with the same name but different

signatures. A method signature is the combination of the method’s name along with

the number, type, and order of the parameters.

Example 3.1: In this application, the Area() method of Shape class is overloaded for
calculating the area of square, rectangle, circle and triangle shapes.
In the Main() method, the Area() method is called multiple times by passing
different arguments

using
System;
namespace
Class_Dem
os{

class Shape{
public void Area(int side){

Console.WriteLine("The area of Square is: " +
side * side);

}
public void Area(int length, int

breadth){ Console.WriteLine("The
area of Rectangle is: " + length
* breadth);

}

public void Area(double radius)
{ Console.WriteLine("The area of
Circle is: "

+ 3.14 * radius *
radius);

}
public void Area(double base1,

double height)
{ Console.WriteLine("The area of
Squate is: "

+ (base1 *
height)/2);

}
}
class

MOverloa
d{ stati
c void
Main(){

Shape shape = new Shape();
 shape.Area(15);
shape.Area(10, 20);
shape.Area(10.5);
shape.Area(15.5, 20.4);
Console.Read();

}
}

}

9
What is Operator Overloading? Write a c# program to explain Operator Overloading.

i. Operator Overloading:

The mechanism of assigning a special meaning to an operator according to user
defined data type, such as classes or structs, known as operator overloading. The
below table shows the list of operators and overloading status.

using
System;
namespace
Class_Demos
{

clas
s

u
n
a
r
y
o
p

[10] CO2 L3

r
{

i
n
t

n
1
,

n
2
;
public unaryopr() { }
public unaryopr(int

a, int b){ n1 =
a;
n2 = b;

}
public void showData(){

Console.WriteLine("The numbers are: " +n1+ "
and " +n2);

}
public static unaryopr operator -

(unaryopr opr){ unaryopr obj =
new unaryopr();
obj.n1
=
-opr.n
1;
obj.n2
=
-opr.n
2;
return
obj;

}
}
class

OpOverlo
ad{ stat
ic void
Main(){

unaryopr opr1 = new unaryopr(20,30);
Console.WriteLine("Before Operator
Overloading"); opr1.showData();

unaryopr opr2 = new unaryopr();
opr2 = -opr1; //invoke operator
overloading method
Console.WriteLine("After Operator
Overloading"); opr2.showData();
Console.Read();

}
}

}

10 Write a C# program to Demonstrate Use of Static class and Static Method.

Static class:

When a class has been defined as static, no need to create an object. A static class
must contain only static members, except for constants (if this is not the case, you
receive compiler errors).

Main benefit: We do not need to make any instance of this class; all members can be
accessible with its own name.

using
System;
namespace
Examples {
static class StClass
{
static int record = 0;
static void printrecord(){
Console.WriteLine("No of stud record: {0}", record);
}
static void Main()
{ record = 2;
printrecord();
Console.ReadLine();
}
}
}

[10] CO2 L3

	1.4 Components of .NET Framework 4.0:
	1.5 CLR[Common Language Runtime]:
	1.6 CTS [Common Type Specifications]:
	Assemblies can stored in two types:

	Strong Name Assembly:
	Private and Shared Assembly:
	Side-by-Side Execution Assembly:
	The .NET execution process completes as given below:
	Advantages:
	i. Method overloading:
	i. Operator Overloading:

	Static class:

