
Page 1 of 16

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – Sep. 2019

Sub: Mobile Applications Sub Code: 17MCA53

Date: 23/09/2019 Duration: 90 min’s
Max

Marks:
50 Sem: V Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 What do you understand by mobile information design and mobile platform?

Explain it.

OR

[10]

CO1 L1

2 Explain the effective use of screen real estate and features of mobile application

[10]
CO1 L2

3
PART II

What are the components of android applications? Explain with example.

OR

[10]

CO2 L1,L2

4 What are the preliminary costs involved in mobile application development [10]
CO1 L1

5

PART III

 What is android? Explain the android architecture with its features and diagram

OR

[10]

CO2 L2

 6

Describe the basic views in android with a suitable code snippet.

[10] CO2 L2

7

PART IV

What is a fragment? Explain the lifecycle of a fragment

[10] CO2 L2

8

OR

Explain the various information design tools of mobile interface design.

[10] CO1 L2

9

PART V

Briefly discuss the Gestalt’s principles.

OR

[10]

CO1 L1

10 Describe the anatomy of android application. [10]
CO2 L2

Page 2 of 16

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1– Sept. 2019

Sub: Mobile Applications
Sub

Code:
17MCA53

Branch

:
MCA

Date: 23/09/2019 Duration:
90

min’s
Max Marks: 50 Sem V OBE

Q1) What do you understand by mobile information design and mobile platform?

Explain it.
Mobile devices offer an exciting space to design information, fitting personalized and realtime data into

tightly-constrained screens. But keep audience goals in mind when crafting an application, because

mobile devices are not generally used for extensive browsing or complex searches. Various mobile

design patterns are discussed hereunder.

1.6.1 Information Display

People identify signals, interpret the meaning of these signals, determine the goal according to

these

interpretations, and then carry out an action until the goal is reached.

o For example, a microwave has a simple display. When the timer alerts us the popcorn is done.

o Overly detailed designs do not suit mobile users, who are often micro-tasking, influenced by

urgent and new

surroundings, and looking for a quick fix for boredom.

.6.2 Design Patterns

o A design pattern recycles and repurposes components, reusing the best ideas.

o More than time efficiency, patterns have been refined by use.

o Look to the user and the purpose of an individual design above any best practices.

Navigation

 Good design makes it clear how users can move through and use application

features.

Annunciator Panel

– Fixed Menu

– Expandable Menu

– Scroll

 Notifications and Feedback

i. Annunciator Panel

o An annunciator panel, seen at the top of Figure 1.6, gives information on the state of a mobile

device.

o Developers can modify or suppress the annunciator panel — which lists the hardware features

such as

network connection and battery power — within an application.

Page 3 of 16

o Because the information in this area is only notifications, application users will not usually

have any direct interaction with the annunciator panel.

ii. Fixed Menu

A menu that remains fixed to the viewport as users roam content is useful in many situations:

- When users need immediate access to frequently selected functionality on multiple screens

- When a reveal able menu is already used on the same screen

- When a lack of controls, conflict with key interactions, or low discovery makes a reveal able

menu a poor choice.

- Because fixed menus are always accessible , users can interact with page content as needed;

keep in mind the small screen real estate, and limit any fixed menus to the absolute necessities.

Scroll:

 As in the case of a reveal able menu giving additional functionality, there will often be

more content on a screen than can be seen in the device viewport. o It is best to limit scrolling,

limiting application screens to the size of the viewport whenever possible. o Only in-focus items

should be able to scroll. o Scrolling must occur both horizontally and vertically. o An endless list of

information breaks large data sets into manageable,consumable sizes within the viewport. o An

expandable list, shown in Figure 1.9, reveals additional, valuable content

1 Android

 Android has a diverse ecosystem, with fewer institutionalized restrictions and a wider variety of

mobile devices than other popular systems.

 They are strong competitor in the mobile market, but the flexibility of Android design can

introduce new issues.

 Development of the Android operating system is led by Google

http://developer.android.com/guide/practices/ui_guidelines/index.html

Interface Tips

– Get started on Android application design with these hints.

 Android convention is to place view-control tabs across the top, and not the bottom, of the

screen.

 Use the main application icon for temporal, hierarchical navigation, instead of a “back” button

and main icon link to the home screen.

 Don’t mimic user interface elements or recycle icons from other platforms.

 For instance, list items should not use carets to indicate deeper content.

 Parallax scrolling is common in Android applications.

 Android development can extend to home-screen “widget” tools.

Accessibility

 Google provides guidelines and recommendations, such as testing with the often-preinstalled

and always-free Talkback. Accessibility design guidelines are listed on the Android Developer

website

 (http://developer.android.com/guide/topics/ui/accessibility/index.html), and further discussed

by the Google “Eyes Free” project

(http://eyesfree.googlecode.com/svn/trunk/documentation/android_access/index.html).

2 iOS

 Apple maintains strict design standards, which are detailed and updated online. iOS

 interface documentation and general mobile design strategies are available from Apple,

including design strategies and case studies, at

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/

Introduction/Introduction.html

Page 4 of 16

Interface Tips

 -Apple can reject an application from the official App Store because of design problems. Follow

the current guidelines closely, starting with these tips:

 iPhone users generally hold from the bottom of the device, so main navigation items should

be in reach of user thumbs.

 Target areas for controls should be a minimum of 44 x 44 points.

 Support standard iOS gestures, such as swiping down from the top to reveal the Notification

Center.

 Larger iPad screens are great for custom multi-finger gestures, but nonstandard gestures

should never be the only way to reach and use important features.

Accessibility

 Accessible touch and gestural controls are available on the iPad and later generation iPhones;

 Screen magnification and colour contrast adjustments are also available.

3 BlackBerry OS

 BlackBerry OS is often the mobile device of choice in or corporate environments.

 BlackBerry includes native support of corporate emails; and runs on many devices with hard

keypads. Which is favoured by users with accessibility issues as well as late adopters to touch-

screen interfaces.

Interface Tips

- Link common tasks to the BlackBerry track pad according to standard actions:

 Press the track pad: Default option, like revealing the menu

 Press and hold track pad: Activate available pop-up box

 Press track pad and select Shift: Highlight content

 Press track pad and select Alt: Zoom

 Move finger along track pad: Cursor or mouse will move accordingly

 Accessibility

- BlackBerry mobile devices include text-based push-delivery messages, closed captions on multimedia

content, and hearing-aid compatibility for hearing accessibility issues. Low-vision users can use the

Clarity theme and other screen adjustments, and benefit from tactile keyboards. Predictive text and

AutoText aid users with mobility and cognitive issues. Best practices and device capabilities are

maintained online at http://docs.blackberry.com/en/

4 Windows Phone7

 Developed by Microsoft, Windows Phone 7 (WP7) is a currently smaller contender, focused on

consumer markets.

 Using the “Metro” theme, features are divided into “Live Tiles” that link to applications.

 Six dedicated hardware buttons (back, start, search, camera, power, and volume), at least 4 GB

of Flash memory, and Assisted GPS.

Interface Tips

 Windows Phone 7 interfaces are minimalist,

 Using empty space to lend clarity to the application. WP7 uses movement over gradients for

on-screen elements to immerse users in the application experience. Users will enter a WP7

application from a “tile,” which can display dynamic and real-time information.

 Tile images should be in the PNG format, 173 pixels 173 pixels at 256 dpi.eaving focus. Do

not use a “back” button to navigate back the page stack. Panorama controls slide horizontally

through panes, and pivot controls list panes users can visit.

Page 5 of 16

 Uniform Page Shuffle presents non-hierarchical information users can shuffle through;

 “leaf-blowing turn” flips content area into focus,

 Scattering and tilting tiles leaving focus.

 Accessibility

 WP7 devices include many standard accessibility features, such as color and

 Contrast adjustment to themes for low-vision users. Many, but not all, devices

 are compatible with TTY, TDD, and hearing aids.

 Learn more about the basics of WP7 accessibility at

 http://www.microsoft.com/

5 Mobile Web Browsers

 If a mobile application sends users to a website, that website should be optimized for mobile

browsers.

 Similarly, mobile web applications should follow key mobile design methods.

 A great resource for design best practices for mobile web browsers is published by the W3C.

Interface Tips

Few quick tips to get started:

 Test for a consistent experience: when websites are accessed from a variety of mobile

browsers.

 Provide minimal navigation: at the top of the page, and use consistent navigation

mechanisms.

 Do not change or refresh the current window: or cause pop-ups, without informing the user

and providing the means to stop it.

 Limit content: what the user has requested, and what the user’s device can display by

avoiding large image files.

 Specify default input formats : when possible, provide preselected defaults

Accessibility

 The W3C Web Accessibility Initiative provides introductions, solutions, and further resources to

create accessible mobile websites and mobile web applications

Q2) Explain the effective use of screen real estate and features of mobile

application

 The first step to use the smaller interfaces of mobile devices effectively is to know the context of use.

Who are the users, what do they need and why, and how, when, and where will they access and use

information?

Mobile design is difficult, as developers try to elegantly display a telescoped view of almost limitless

information. But user experience issues are amplified on mobile interfaces.

Cognitive load increases while attention is diverted by the needs to navigate, remember what was seen,

and re-find original context.

Cognitive load is the mental effort to comprehend and use an application, whatever the inherent task

complexity or information structure may be.

Effectively use screen real estate by embracing minimalism, maintaining a clear visual hierarchy, and

staying focused.

Embrace Minimalism
• Limit the features available on each screen, and use small, targeted design features.

• Content on the screen can have a secondary use within an application, but the application designer

should be able to explain why that feature is taking up screen space.

• Banners, graphics, and bars should all have a purpose.

Use a Visual Hierarchy

Page 6 of 16

• Help users fight cognitive distractions with a clear information hierarchy.

• Draw attention to the most important content with visual emphasis.

• Users will be drawn to larger items, more intense colors, or elements that are called out with bullets or

arrows; people tend to scan more quickly through lighter color contrast, less intense shades, smaller

items, and text-heavy paragraphs.

• A consistent hierarchy means consistent usability; mobile application creators can create a hierarchy

with position, form, size, shape, color, and contrast.

Stay Focused
• Start with a focused strategy, and keep making decisions to stay focused throughout development.

• A smaller file size is a good indicator of how fast an application will load, so the benefits of fighting

feature creep extend beyond in-application user experience.

• Focused content means users won’t leave because it takes too long for the overwhelming amount of

images per screen to load.

• And users won’t be frustrated with the number of links that must be cycled through to complete a task.

Text-heavy pages reduce engagement as eyes glaze over and users switch to another application.

• If people have taken the time to install and open an application, there is a need these users hope to

meet.

• Be methodical about cutting back to user necessities. Build just enough for what users need, and

knowing what users need comes from understanding users

As it stands, there are really four major development targets. Each of the native frameworks comes with

certain expectations and a user base. BlackBerry is often used in education and government, whereas

the iPhone and Android user base is far more widespread. Windows Phone 7 being the newcomer is

used primarily by developers and hasn’t necessarily hit its stride yet.

iOS, the technology that is run on Apple mobile devices, has benefits and limitations specific to its

development cycle. The base language is Objective-C, with Cocoa Touch as the interface layer. At this

time iOS can be developed only using Apple’s XCode, which can run only on a Macintosh.

The Android framework, on the other hand, is written in Java, and can be developed using any Java

tools. The specific tooling recommended by Google and the Android community is Eclipse with the

Android toolkit. Unlike iOS, it can be developed on PC, Mac, or Linux. Like Android, the BlackBerry

device framework is also written in Java; however, it is limited in that the Emulator and Distribution

tools run only on Windows at this time.

The newest native framework on the market is Windows Phone 7 and its framework sits on top of the

Microsoft’s .NET Framework. The language of choice is C# and the framework lies in a subset of

Silverlight, Microsoft’s multiplatform web technology. It also has the limitation that the Microsoft

Windows Phone tools run only on Windows.

Q3) What are the components of android applications? Explain with example.
Activities — It is the presentation layer of application. The UI of your application is

built around one or more extensions of the Activity class. Activities use Fragments

and Views to layout and display information, and to respond to user actions.

Compared to desktop development, Activities are equivalent to Forms.

 Services — These are the invisible workers of your application. Service components

run without a UI, updating your data sources and Activities, triggering Notifications,

and broadcasting Intents. They are used to perform long running tasks, or those that

require no user interaction (such as network lookups or tasks that need to continue

even when your application’s Activities aren’t active or visible.)

 Content Providers — Shareable persistent data storage. Content Providers

manage and persist application data and typically interact with SQL databases. They

are also the preferred means to share data across application boundaries. You can

configure your application’s Content Providers to allow access from other

applications, and you can access the Content Providers exposed by others. Android

devices include several native Content Providers that expose useful databases such

as the media store and contacts.

 Intents — A powerful inter-application message-passing framework. Intents are

used extensively throughout Android. You can use Intents to start and stop Activities

and Services, to broadcast messages system-wide or to an explicit Activity, Service,

Page 7 of 16

or Broadcast Receiver, or to request an action be performed on a particular piece of

data.

 Broadcast Receivers — Intent listeners. Broadcast Receivers enable your

application to listen for Intents that match the criteria you specify. Broadcast

Receivers start your application to react to any received Intent, making them perfect

for creating event-driven applications.

 Widgets — Visual application components that are typically added to the device

home screen. A special variation of a Broadcast Receiver, widgets enable you to

create dynamic, interactive application components for users to embed on their

home screens.

 Notifications — Notifications enable you to alert users to application events without

stealing focus or interrupting their current Activity. They’re the preferred technique

for getting a user’s attention when your application is not visible or active, particularly

from within a Service or Broadcast Receiver. For example, when a device receives a

text message or an email, the messaging and Gmail applications use Notifications to

alert you by flashing lights, playing sounds, displaying icons, and scrolling a text

summary. You can trigger these notifications from your applications

4. What are the preliminary costs involved in mobile application development
Mobile app development costs related to hardware and software. The developer team

needs devices to test the software on. And if you want to deploy your application to any

public market, then your company will need accounts on the various markets (these often

renew annually).

1.2.1 Hardware

To develop good mobile apps:

a. Need an intel based Mac:

 Can run Windows on them either virtually or on the bare metal.

 Expect to spend between $800 to $1600

b. Need multiple monitors

 When debugging any application requires 3 machines

 Emulator/simulator

 My Dev Tool (IDE)

 Web browser

 Having access to all of this information at once prevents context switching for

a developer.

c. Examples of devices you can use to test the various platforms instead of emulator:

 Android 2.2 (Froyo): Motorola Droid 2

 Android 3.0 Tablet: Samsung Galaxy Tablet

 Apple iPod Touch: iPod Touch 3rd Generation

 Apple iPhone (versions 3.x and 4.x) (cell service): iPhone 3GS

 Apple iPhone (versions 4 and greater) (cell service): iPhone 4

 Apple iPad (WiFi or 3G for cell service testing): iPad 1

 Apple iPad (with camera): iPad 2 or iPad 3

 Windows Phone 7: Samsung Focus

1.2.2 Software

When developing mobile applications, there are few overlaps when it comes to software.

To develop for iOS you need a Mac. To develop for BlackBerry you need Windows. For Java-based

frameworks use Eclipse. Building HTML for PhoneGap can be done in your

text editor of choice. Table 1.1 shows software needed for development.

Page 8 of 16

1.2.3 Licenses and Developer Accounts

Table 1.2 shows the information regarding various accounts necessary to develop mobile

app. One has to pay some amount for developer accounts per year.

1.2.4 Documentation and APIs

Following are links to the respective technologies’ online documentation and APIs. This will

be the location for the latest information in the respective technology

 MSDN Library: http://msdn.microsoft.com/enus/library/ff402535(v=vs.92).aspx

 iOS Documentation: http://developer.apple.com/devcenter/ios/index.action

 BlackBerry Documentation: http://docs.blackberry.com/en/developers/?userType=21

 Android SDK Documentation: http://developer.android.com/reference/packages.html

and http://developer.android.com/guide/index.html

 PhoneGap Documentation: http://docs.phonegap.com/

 Titanium API Documentation: http://developer.appcelerator.com/apidoc/mobile/latest

Page 9 of 16

5.What is android? Explain the android architecture with its features and diagram

The Android OS is roughly divided into five sections in four main layers:

Linux kernel — This is the kernel on which Android is based. This layer contains all the lowlevel

device drivers for the various hardware components of an Android device.

Libraries — These contain all the code that provides the main features of an Android OS. For

example, the SQLite library provides database support so that an application can use it for data

storage. The WebKit library provides functionalities for web browsing.

 Android runtime — At the same layer as the libraries, the Android runtime provides a set of core

libraries that enable developers to write Android apps using the Java programming language. The

Android runtime also includes the Dalvik virtual machine, which enables every Android application

to run in its own process, with its own instance of the Dalvik virtual machine (Android applications

are compiled into the Dalvik executables). Dalvik is a specialized virtual machine designed

specifically for Android and optimized for battery-powered mobile devices with limited memory and

CPU.

Application framework — Exposes the various capabilities of the Android OS to application

developers so that they can make use of them in their applications.

Applications — At this top layer, you will find applications that ship with the Android device (such as

Phone, Contacts, Browser, etc.), as well as applications that you download and install from the

Android Market. Any applications that you write are located at this layer.

6.Describe the basic views in android with a suitable code snippet.

Basic Views

Some of the basic views that can be used to design UI of Android application are:

 TextView

 EditText

 Button

 ImageButton

 CheckBox

 ToggleButton

 RadioButton

 RadioGroup

These basic views enable you to display text information, as well as perform some basic

selection.

Page 10 of 16

 TextView View: The TextView view is used to display text to the user. When we create

a new Android project, Eclipse always creates one <TextView> element in

activity_main.xml file, to display Hello World as shown below –

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello”

/>

</LinearLayout>

Button — Represents a push-button widget

ImageButton — Similar to the Button view, but it also displays an image

EditText — A subclass of the TextView view, but it allows users to edit its text content

CheckBox — A special type of button that has two states: checked or unchecked

RadioGroup and RadioButton — The RadioButton has two states: either checked or unchecked. Once

a RadioButton is checked, it cannot be unchecked. A RadioGroup is used to group together one or more

RadioButton views, thereby allowing only one RadioButton to be checked within the RadioGroup.

ToggleButton — Displays checked/unchecked states using a light indicator

To understand the behavior of these views, create a new android project and place the

following code in activity_main.xml file, without disturbing existing code.

<Button android:id=”@+id/btnSave”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Save” />

<Button android:id=”@+id/btnOpen”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:text=”Open” />

<ImageButton android:id=”@+id/btnImg1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:src=”@drawable/icon” />

<EditText android:id=”@+id/txtName”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

<CheckBox android:id=”@+id/chkAutosave”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Autosave” />

<CheckBox android:id=”@+id/star”

style=”?android:attr/starStyle”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

<RadioGroup android:id=”@+id/rdbGp1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:orientation=”vertical” >

<RadioButton android:id=”@+id/rdb1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Option 1” />

<RadioButton android:id=”@+id/rdb2”

Page 11 of 16

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Option 2” />

</RadioGroup>

<ToggleButton android:id=”@+id/toggle1”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

After running the application, the output will be displayed as shown in the following diagram. Click on

each of these views, to observe their default behavior.

7. What is a fragment? Explain the lifecycle of a fragment
Fragments enable you to divide your Activities into fully encapsulated reusable

components, each with its own lifecycle and UI. The primary advantage of Fragments is the

ease with which you can create dynamic and flexible UI designs that can be adapted to

various screen sizes.

Each Fragment is an independent module that is tightly bound to the Activity into which it is

placed. Fragments can be reused within multiple activities, as well as laid out in a variety of

combinations to suit multi-pane tablet UIs and added to, removed from, and exchanged

within a running Activity to help build dynamic UIs. Fragments provide a way to present a

consistent UI optimized for a wide variety of Android device types, screen sizes, and device

densities.

The lifecycle events of a Fragment reflect those of its parent Activity. But, when the

container Activity is in its active and resumed state by adding or removing a fragment, it will

affect the lifecycle independently.

Attaching and Detaching Fragments from the Parent Activity: The full lifetime of

your Fragment begins when it is bound to its parent Activity and ends when it has

been detached. These events are represented by the calls to onAttach and

onDetach, respectively. As with any handler called after a Fragment/Activity has

become paused, it’s possible that onDetach will not be called if the parent

Activity’s process is terminated without completing its full lifecycle. The onAttach

event is triggered before the Fragment’s UI has been created, before the Fragment

itself or its parent Activity have finished their initialization. Typically, the onAttach

event is used to gain a reference to the parent Activity in preparation for further

initialization tasks.

 Creating and Destroying Fragments: The created lifetime of your Fragment

occurs between the first call to onCreate and the final call to onDestroy. As it’s

not uncommon for an Activity’s process to be terminated without the corresponding

onDestroy method being called, so a Fragment can’t rely on its onDestroy

handler being triggered. As with Activities, you should use the onCreate method to

initialize your Fragment. It’s good practice to create any class scoped objects here to

ensure they’re created only once in the Fragment’s lifetime.

 Creating and Destroying User Interfaces: A Fragment’s UI is initialized (and

destroyed) within a new set of event handlers: onCreateView and

onDestroyView, respectively. Use the onCreateView method to initialize your

Fragment:

Page 12 of 16

o Inflate the UI,

o get references (and bind data to) the Views it contains,

o and then create any required Services and Timers.

Once you have inflated your View hierarchy, it should be returned from this handler:

return inflater.inflate(R.layout.my_fragment, container, false);

8. Explain the various information design tools of mobile interface design.
Sketching and Wireframes

o Sometimes we need to shape ideas on paper before focusing on the pixels.

o Storyboard application screens to outline features and flow, focusing on the big

picture.

o Save wasted time developing the wrong thing the right way by involving all key

stakeholders in the sketching and wire framing process.

o Mobile stencils are even on the market to help non doodlers pencil in ideas

before turning to computer screens.

o A wireframe is a rough outline of each application’s framework.

o Stay focused on functionality during wire framing;

 these easy-to-share,

 easy-to-edit files are just a skeleton of the design.

A simple image will do, but tools such as Balsamiq Mock-ups let designers drop

boilerplate into a wireframe editor

 Mock-up Designs

o When you are ready to consider colors and fonts, you can build the mock-up

design concept in Adobe Creative Suite.

o The final images of buttons and icons will be pulled from the final mock-up

design, but details will solidify only after some experimentation.

o Look to existing stencils for a streamlined process that does not re-create the

wheel.

Prototype:

o “Perfection is the enemy of good,” and designs that start as ugly prototypes

quickly progress to elegant, usable applications.

o The most primitive start is a most important iteration.

o Platform-specific tools are available, such as the Interface Builder or Xcode for

iOS, but HTML and CSS are a standard and simple way to quickly build

prototypical interactions

 On-device Testing:

o One of the most important tools during design will be the physical device.

o Buy, or Borrow, the devices and application will run on.

 Simulators and Emulators:

 Simulators and emulators are important when the hardware is unavailable and the

service contracts for devices are prohibitively expensive.

 A simulator uses a different codebase to act like the intended hardware

environment.

 An emulator uses a virtual machine to simulate the environment using the same

codebase as the mobile application.

 It can be cost prohibitive to test on many devices, making emulators incredibly

useful.

 Emulators can be run in collaboration with eye-tracking software already available in

most testing labs, but an emulator lacks the touch experience of a mobile

application.

 At an absolute minimum, use one of the target devices for user testing at this level.

During design, development, testing, and demonstration, these tools are incredibly

valuable.

9.Briefly discuss the Gestalt’s principles.
The Gestalt principles have had a considerable influence on design, describing how the

human mind perceives and organizes visual data. The Gestalt principles refer to theories of

visual perception developed by German psychologists in the 1920s. According to these

Page 13 of 16

principles, every cognitive stimulus is perceived by users in its simplest form. Key principles

include proximity, closure, continuity, figure and ground, and similarity.

Proximity:

 Users tend to group objects together.

 Elements placed near each other are perceived in groups as shown in Figure

 Many smaller parts can form a unified whole.

 Icons that accomplish similar tasks may be categorically organized with proximity.

 Place descriptive text next to graphics so that the user can understand the

relationship between these graphical and textual objects.

Closure:

 If enough of a shape is available, the missing pieces are completed by the human

mind.

 In perceiving the unenclosed spaces, users complete a pattern by filling in missing

information. For example, people recognize it as a triangle even though the Figure

1.2 is not complete.

 In grid patterns with horizontal and vertical visual lines, use closure to precisely

show the inside and outside of list items.

Continuity:

 The user’s eye will follow a continuously-perceived object. When continuity occurs,

users are compelled to follow one object to another because their focus will travel in

the direction they are already looking.

 They perceive the horizontal stroke as distinct from the curled stroke in the Figure

1.3, even though these separate elements overlap.

Smooth visual transitions can lead users through a mobile application, such as a

link with an indicator pointing toward the next object and task.

Figure and Ground:

 A figure, such as a letter on a page, is surrounded by white space, or the ground.

For example, in Figure 1.4, the figure is the gear icon, and the ground is the

surrounding space.

Primary controls and main application content should maintain a distinct separation

between figure and ground.

Similarity:

 Similar elements are grouped in a semi-automated manner, according to the strong

visual perception of colour, form, size, and other attributes. Figure 1.5 illustrates it.

Page 14 of 16

 In perceiving similarity, dissimilar objects become emphasized.

 Strict visual grids confuse users by linking unrelated items within the viewport.

 The layout should encourage the proper grouping of objects and ideas.

10. Describe the anatomy of android application.
The various folders and their files are as follows:

 src — Contains the file, MainActivity.java. It is the source file for your activity. You

will write the code for your application in this file.

 Android 4.4.2 — This item contains one file, android.jar, which contains all the

class libraries needed for an Android application.

 gen — Contains the R.java file, a compiler-generated file that references all the

resources found in your project. You should not modify this file.

 assets — This folder contains all the assets used by your application, such as

HTML, text files, databases, etc.

 res — This folder contains all the resources used in your application. It also contains

a few other subfolders:

o drawable - <resolution>: All the image files to be used by the Android

application must be stored here.

layout - contains activity_main.xml file, which the is GUI of the application.

o values - contains files like strings.xml, styles.xml that are need for storing

the string variables used in the applications, creating style-sheets etc.

 AndroidManifest.xml — This is the manifest file for your Android application. Here

you specify the permissions needed by your application, as well as other features

(such as intent-filters, receivers, etc.).

Details of some of the important files are given hereunder:

 strings.xml File: The activity_main.xml file defines the user interface for your

activity. Observe the following in bold:

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello” />

The @string in this case refers to the strings.xml file located in the res/values folder.

Hence, @string/hello refers to the hello string defined in the strings.xml file, which

is “Hello World!”:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

<string name=”hello”>Hello World!</string>

<string name=”app_name”>HelloWorld</string>

</resources>

It is recommended that you store all the string constants in your application in this

strings.xml file and reference these strings using the @string identifier. That way,

if you ever need to localize your application to another language, all you need to do

is replace the strings stored in the strings.xml file with the targeted language and

recompile your application.

 AndroidManifest.xml File: This file contains detailed information about the

application. Observe the code in this file:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

Page 15 of 16

package="com.example.HelloWorld"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="19"

android:targetSdkVersion="19" />

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

</application>

</manifest>

Key points about this file are as below :

o It defines the package name of the application as

net.learn2develop.HelloWorld.

o The version code of the application is 1. This value is used to identify the

version number of your application. It can be used to programmatically

determine whether an application needs to be upgraded.

o The version name of the application is 1.0. This string value is mainly used for

display to the user.

o The application uses the image named ic_launcher.png located in the

drawable folder.

o The name of this application is the string named app_name defined in the

strings.xml file.

o There is one activity in the application represented by the MainActivity.java

file. The label displayed for this activity is the same as the application name.

o Within the definition for this activity, there is an element named <intent-filter>:

 The action for the intent filter is named android.intent.action.MAIN to

indicate that this activity serves as the entry point for the application.

 The category for the intent-filter is named

android.intent.category.LAUNCHER to indicate that the application

can be launched from the device’s Launcher icon.

o Finally, the android:minSdkVersion attribute of the <uses-sdk> element

specifies the minimum version of the OS on which the application will run.

 R.java File: As you add more files and folders to your project, Eclipse will

automatically generate the content of R.java, which at the moment contains the

following:

package net.learn2develop.HelloWorld;

public final class R {

public static final class attr {

}

public static final class drawable {

public static final int icon=0x7f020000;

}

public static final class layout {

public static final int main=0x7f030000;

}

public static final class string {

Page 16 of 16

public static final int app_name=0x7f040001;

public static final int hello=0x7f040000;

}

}

You are not supposed to modify the content of the R.java file; Eclipse automatically

generates the content for you when you modify your project.

 MainActivity.java File: The code that connects the activity to the UI

(activity_main.xml) is the setContentView() method, which is in the MainActivity.java

file:

package net.learn2develop.HelloWorld;

import android.app.Activity;

import android.os.Bundle;

public class MainActivity extends Activity

{

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

}

Here, R.layout.main refers to the activity_main.xml file located in the res/layout

folder. As you add additional XML files to the res/layout folder, the filenames will

automatically be generated in the R.java file. The onCreate() method is one of many

methods that are fired when an activity is loaded.

