USN	1	С				

Internal Assessment Test 2 – December 2019

Sub:	Computer Organization								18MCA14
Date:	-12-19	Duration:	90 mins	Max Marks:	50	Sem:	I	Branch:	MCA

Note: Answer any full 5 questions. All questions carry equal marks.

OBE **Marks** RBT CO 10 CO₁ L4 10 CO1 L2 10 CO₁ L2

Total Marks: 50

1.	State the following Boolean postulates: closure, associate law, communicative law,
	identity law, inverse, distributive law

(OR)

PART-1

2 Subtract using r's complement: i. (10011)₂-(11100)₂ ii. $(3250)_{10}$ - $(72532)_{10}$.

PAR T-II

3. What is full adder? With the truth table of full adder, obtain the logical expression for sum and carry terms and implement the same using two half adders

4. Perform the multiplication of -4 and 2 using Booth's algorithm.

PART-III

5. Discuss how you can make a 3x8 decoder from two 2x4 decoders.

(OR)

10	CO2	L3
10	CO3	L2

CMR **INSTITUTE OF TECHNOLOGY**

USN	1	C				

Internal Assessment Test 2 – December 2019

Sub:	Computer Organization								18MCA14
Date:	-12-19	Duration:	90 mins	Max Marks:	50	Sem:	I	Branch:	MCA

Note: Answer any full 5 questions. All questions carry equal marks.

Total Marks: 50

Marks

OBE

PART-1

1. State the following Boolean postulates: closure, associate law, communicative law, identity law, inverse, distributive law

2 Subtract using r's complement: i. $(10011)_2$ - $(11100)_2$

ii. $(3250)_{10}$ - $(72532)_{10}$.

PART-II 3. What is full adder? With the truth table of full adder, obtain the logical expression for sum and carry terms and implement the same using two half adders

(OR)

4. Perform the multiplication of -4 and 2 using Booth's algorithm.

PART-III

(OR)

5. Discuss how you can make a 3x8 decoder from two 2x4 decoders.

RBT 10 CO₁ L4 10 CO1 L2 CO₁ L1 4 CO1 L4 10 CO₁ L4 10 CO₁ L1

6	Draw the circuit diagram of a 4bit binary adder-subtractor and explain how it works	5	CO3	L3
	PART-IV	10	CO2	L1
7	Explain with a neat diagram the functional units of a computer. (OR)			
8	a. Explain with a neat diagram the Bus Structureb. Explain basic performance equation.	5+5	CO2	L2
	PAR T-V			
9	Explain the working of a MUX with the help of circuit diagram and truth table. (OR)	10	CO1	L1
10	Use 2-address, 1-address and zero-address instructions to execute the expression (A+B)-(C+D)	10	CO3	L1

6	Draw the circuit diagram of a 4bit binary adder-subtractor and explain how it works	5	CO3	L3
7	PART-IV Explain with a neat diagram the functional units of a computer. (OR)	10	CO2	L1
8	a. Explain with a neat diagram the Bus Structureb. Explain basic performance equation.	5+5	CO2	L2
	PART-V			
9	Explain the working of a MUX with the help of circuit diagram and truth table. (OR)	10	CO1	L1
10	Use 2-address, 1-address and zero-address instructions to execute the expression (A+B)-(C+D)	10	CO3	L1