

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 2 – November 2019

Dr. Vakula Rani

 Answer any five of the following 10 Marks

Q1 Describe the general method for divide and conquer. State the Masters Theorem

Sol : Divide-and-conquer algorithms work according to the following general plan:

1. A problem is divided into several subproblems of the same type, ideally of about equal size.

2. The subproblems are solved (typically recursively, though sometimes a different algorithm is employed, especially

when subproblems become small enough).

3. If necessary, the solutions to the subproblems are combined to get a solution to the original problem.

The general method is shown diagrammatically as below:

The pseudo code for the same is given by:

Algorithm DivideAndConquer(P,S)

 Divide the problem P into k subproblems P1,P2…Pk

 For each i in [1..k]

 / /solve each of the problem recursively by using the same technique

 Si DivideAndConquer(Pi)

 Combine the solutions to the subproblems P1,P2… Pk i.e. S1, S2…, Sk to form the solution S

 Return S

A recurrence is a recursive description of a function, or in other words, a description of a function in
terms of itself.

Sub: Design and Analysis of Algorithms Code: 18MCA33

Date: 18-11-2019 Duration: 90 mins Max Marks: 50 Sem: IIIA Branch: MCA

Divide and Conquer Recurrences (Recursion Trees)
Many divide and conquer algorithms give us running-time recurrences of the form

where a and b are constants and f (n)= nd is some other function.
Master Theorem

(2) Explain and write algorithm for the brute force string matching process and Apply it to search for ABABC

using the above algorithm in the text : BAABABABCCA.

Solution

Given a string of n characters called the text and a string of m characters (m ≤ n) called the pattern, find a

substring of the text that matches the pattern. To put it more precisely, we want to find i—the index of the

leftmost character of the first matching substring in the text—such that

If matches other than the first one need to be found, a string-matching algorithm can simply continue working
until the entire text is exhausted. align the pattern against the first m characters of the text and start matching
the corresponding pairs of characters from left to right until either all the m pairs of the characters match (then

the algorithm can stop) or a mismatching pair is encountered.

Example

Text String = { BAABABABCCA }

Pattern String ={ ABABC }

B A A B A B A B C C A

A B A B C

 A B A B C

 A B A B C

 A B A B C

 A B A B C

String is matched return the starting Index -4

B A A B A B A B C C A

 A B A B C

The time complexity would be analyzed by finding the number of times the basic operation j=j+1 is executed.

The inner loop will be executed a maximum of m times (j=0 to m-1).

 Therefore

T(n)= = (n-m)*m = θ(mn).

Where m is the length of pattern and n is the length of text.

Q3. Write an algorithm to multiply two large integers using divide and conquer and analyze its efficiency. Use

the divide and conquer strategy to multiply 6721 and 3032.

T he conventional algorithm for multiplying two n-digit integers, each of the n digits of the first
number is multiplied by each of the n digits of the second number for the total of n2 digit
multiplications. (If one of the numbers has fewer digits than the other, we can pad the shorter
number with leading zeros to equalize their lengths.)
By using divide-and-conquer method , it would be possible to design an algorithm with fewer than
n2 digit multiplications,

Example :
To demonstrate the basic idea of the algorithm, let us start with a case of

Four-digit integers –6721 and 3032 . These numbers can be represented as follows:

X= 3421 = 67 * 102 + 21 Let A = 67 ; B = 21

Y=3032 = 30 * 102 + 32 Let C = 30; D = 32

Now let us multiply them:

X* Y = AC * 104 + [AC + (A – B)* (D – C) + BD] * 102 + BD

 = 67 * 60 * 104 +[(67 * 60) +(67 – 21) * (32 -30) * 102 + (21 * 32)

 = 4020 * 10000 + [4020 +92 + 672] * 100 + 672

 = 40200000 + 478400 +672

 = 40679072

Algorithm multi(X, Y, n)

//Input : X & Y two long integers; n – no.of digits of X

// Output : Product of two long integers

Begin

 If (n == 1)

 Return(X * Y)

 Else

 A= Left n/2 bits of X

 B = Right n/2 bits of X

 C= Left n/2 bits of Y

 D = Right n/2 bits of Y

 m1 = multi(A,C)

 m2 = multi(A-B, D-C)

 m3 = multi(B,D)

 return (m1 * 10n +(m1 + m2 +m3) * 10n/2 +m3

 End

Analysis

Hence T(n) = θ(𝑛log2 3) = θ(n1.58). This time complexity is much better than the brute force multiplication

which takes θ(n2) time for n digit multiplication.

Q4. Explain and design Prim‟s algorithm and apply it for the given graph to find minimum cost
spanning tree .

 Sol : Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding
subtrees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from the

set V of the graph’s vertices. On each iteration, the algorithm expands the current tree by simply

attaching to it the nearest vertex not in that tree. The algorithm stops after all the graph’s vertices
have been included in the tree being constructed.
Since the algorithm expands a tree by exactly one vertex on each of its iterations, the total number of

such iterations is n − 1, where n is the number of vertices in the graph. The tree generated by the
algorithm is obtained as the set of edges used for the tree expansions.

Here is pseudocode of this algorithm.

Min cost = 2+3+4+6 = 15

Q5.a) Explain the greedy method and write the general algorithm for the method

Sol:
Greedy algorithms build a solution part by part, choosing the next part in such a way, that it gives an
immediate benefit. This approach never reconsiders the choices taken previously. This approach is
mainly used to solve optimization problems. Greedy method is easy to implement and quite efficient
in most of the cases. Hence, we can say that Greedy algorithm is an algorithmic paradigm based on
heuristic that follows local optimal choice at each step with the hope of finding global optimal
solution.

The greedy approach suggests constructing a solution through a sequence of steps, each expanding
a partially constructed solution obtained so far, until a complete solution to the problem is reached.

On each step—and this is the central point of this technique—the choice made must be:

➢ Feasible, i.e., it has to satisfy the problem’s constraints
➢ Locally optimal, i.e., it has to be the best local choice among all feasible choices available on

that step
➢ Irrevocable, i.e., once made, it cannot be changed on subsequent steps of the algorithm

Q5.b) Define Minimum spanning tree and mention its applications

Sol:
A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that contains
all the vertices of the graph. If such a graph has weights assigned to its edges, a minimum spanning tree is its
spanning tree of the smallest weight, where the weight of a tree is defined as the sum of the weights on all its
edges. The minimum spanning tree problem is the problem of finding a minimum spanning tree for a given

weighted connected graph.

 Graph and its spanning trees, with T1 being the minimum spanning tree.

Q6. Find the minimum cost spanning tree for the given graph below by applying Kruskal’s algorithm. Write

the algorithm and compute minimum cost .

Kruskal’s algorithm is used for solving the minimal spanning tree problem. Spanning tree of an undirected

connected graph is its connected acyclic subgraph(tree) that contains all the vertices of the graph. If such a

graph has weights assigned to its edges, a minimum spanning tree is its spanning tree of the smallest weight,

where the weight of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree

problem is the problem of finding a minimum spanning tree for a given weighted connected graph.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph G = (V, E) as an acyclic

subgraph with |V| − 1 edges for which the sum of the edge weights is the smallest. Consequently, the algorithm

constructs a minimum spanning tree as an expanding sequence of subgraphs that are always acyclic but are not

necessarily connected on the intermediate stages

 Q 7 Write and analyze the Huffman coding algorithm. Show the tree and code for the set of
symbols given below along with their relative frequency.

Huffman’s algorithm
Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given. Record the frequency
of each symbol in its tree’s root to indicate the tree’s weight. (More generally, the weight of a tree will be equal
to the sum of the frequencies in the tree’s leaves.)
Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the smallest weight
(ties can be broken arbitrarily, but see Problem 2 in this section’s exercises). Make them the left and right
subtree of a new tree and record the sum of their weights in the root of the new tree as its weight.
A tree constructed by the above algorithm is called a Huffman tree. It
defines—in the manner described above—a Huffman code.

Hence, DAD is encoded as 011101, and
 10011011011101 is decoded as BAD_AD.

Q8. Explain the Dijkstra’s single source shortest path algorithms and analyze its time complexity.
Source vertex ‘a’.

Dijkstra’s algorithm is an algorithm for solving the single-source shortest-paths problem: for a given vertex

called the source in a weighted connected graph with non negative edges, find shortest paths to all its other

vertices. Some of the applications of the problem are transportation planning, packet routing in communication

networks finding shortest paths in social networks, etc. First, it finds the shortest path from the source. to a

vertex nearest to it, then to a second nearest, and so on. In general, before its ith iteration starts, the algorithm

has already identified the shortest paths to i − 1 other vertices nearest to the source. These vertices, the source,

and the edges of the shortest paths leading to them from the source form a subtree Ti of the given graph. The set

of vertices adjacent to the vertices in T called “fringe vertices”; are the candidates from which Dijkstra’s

algorithm selects the next vertex nearest to the source. To identify the ith nearest vertex, the algorithm

computes, for every fringe vertex u, the sum of the distance to the nearest tree vertex v and the length dv of the

shortest path from the source to v and then selects the vertex with the smallest such d value. d indicates the

length of the shortest path from the source to that vertex till that point. We also associate a value p with each

vertex which indicates the name of the next-to-last vertex on such a path, . After we have identified a vertex u*

to be added to the tree, we need to perform two operations.

The psuedocode for Dijkstra’s is as given below:

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data structures used for implementing the priority

queue and for representing an input graph itself.

Graph represented by adjacency matrix and priority queue by array:

In loop for initialization takes time |V| since the insertion into the queue would just involve appending the

vertices at the end(since it is an array implementation). For the second loop, the loop runs |V| times. Each time

the DeleteMin operation would take a maximum of θ(|V|) time since it would involve finding the vertex in the

array with min d value, for a total time of |V|2. The for loop (for iupdating the neighbor vetices) would run |V|

times again. However the Decrease would take θ(1) time because the index of the vertex would be known.

Thus the total time complexity is θ(|V|2).

Graph represented by adjacency list and priority queue by binary heap:

All heap operations take θ(lg|V|) time. Thus the first loop runs |V| times and each time the Insert would take

θ(lg|V|) time. The second loop runs |V| times and the DeleteMin would again take lg|V| time. Thus the total

number of time DecreaseMin would run across all iterations is θ(Vlg|V|). In the second loop the basic operation

is Decrease(Q,u,du) whoch is run the maximum number of times. Across all iterations using adjacency list,

since for each vertex Decrease is called for a maximum of all its adjacent vertices, the number of times

Decrease is invoked |E| times. For each time it is onvoked , it takes O(lg|V|) time to execute. Thus the total time

complexity is θ((|E|+|V|)lg|V|).

Graph represented by adjacency list and priority queue by fibonacci heap:

The time taken in this case θ(|E|+|V|lg|V|).

Q9. Define Binary Tree .Write algorithms for inorder, preorder and postorder traversal of a binary tree. Give

examples for all three .

Sol:

Def : A binary tree is a special type of tree in which every node or vertex has at most two children that is
either no child node or one child node or two child nodes

Tree traversal techniques
➢ Inoder Traversal
➢ Pre-order Traversal
➢ Post orderTraversal Pre-order

Algorithm inorder(T)
Begin
 if T not empty
 inorder(TL)
 print root(T)
 inorder(TR)
End
Algorithm preorder(T)
Begin
 if T not empty
 print root(T)
 preorder(TL)
 preorder(TR)
End
Algorithm postorder(T)
Begin
 if T not empty
 postorder(TL)
 postorder(TR)
 print root(T)
End

Q10. Explain Warshall’s algorithm for the finding the transitive closure of a graph.

0 1 0 0
 0 0 0 1
 0 0 0 0
 1 0 1 0.

