CMR

INSTITUTE OF
TECHNOLOGY
Internal Assessment Test 2 — November 2019
Sub: Design and Analysis of Algorithms Code: | 18MCA33
Date: 18-11-2019 Duration: 90 mins Max Marks: 50 Sem: IITA Branch: MCA

Dr. Vakula Rani

Answer any five of the following 10 Marks
Q1 Describe the general method for divide and conquer. State the Masters Theorem

Sol : Divide-and-conquer algorithms work according to the following general plan:

1. A problem is divided into several subproblems of the same type, ideally of about equal size.

2. The subproblems are solved (typically recursively, though sometimes a different algorithm is employed, especially
when subproblems become small enough).

3. If necessary, the solutions to the subproblems are combined to get a solution to the original problem.

The general method is shown diagrammatically as below:

= H ——,

— —
.

knroblem i of size n /

.-—-"’--‘/ h\"&____
e i
e —— - —

If"d subproblem 1 \ subproblem 2 . .. Eub:rnblem k \
“_ ©of size 'k S size 'k l of size ni'k //.
w -
solution to solution to

subproblemn 1 subproblem ik

w

solution to
the original problerm

The pseudo code for the same is given by:
Algorithm DivideAndConquer(P,S)
Divide the problem P into k subproblems P1,P2...Pk
For eachiin [1..K]
/ Isolve each of the problem recursively by using the same technique
Si< DivideAndConquer(Pi)
Combine the solutions to the subproblems P1,P2... Pki.e. S1, S2..., Sk to form the solution S
Return S

A recurrence is a recursive description of a function, or in other words, a description of a function in
terms of itself.

Divide and Conquer Recurrences (Recursion Trees)
Many divide and conquer algorithms give us running-time recurrences of the form

T(n)=aT(n/b)+ f(n)

where a and b are constants and f (n)= nd is some other function.
Master Theorem

,,,

» Let T(n) be a monotonically increasing function
that satisfies

T(n) = a T(nwb) + f(n)
T(1)=c
where a> 1, b =2, ¢>0. If f(n) is ®(nd) where d >

0 then e(n?) ifa=bd
T(n) = (~)(nd logn) Ifa=nhd

O(nlose) ifa=>bd

(2) Explain and write algorithm for the brute force string matching process and Apply it to search for ABABC
using the above algorithm in the text : BAABABABCCA.

Solution

Given a string of n characters called the text and a string of m characters (m < n) called the pattern, find a
substring of the text that matches the pattern. To put it more precisely, we want to find i—the index of the
leftmost character of the first matching substring in the text—such that

LE=Po---, yi=Piso s ligm—1= Pm—1-
fo ... oo Byioees igmog (- text T
1 $ t
Po -~ Pj - Pm- pattern P

If matches other than the first one need to be found, a string-matching algorithm can simply continue working
until the entire text is exhausted. align the pattern against the first m characters of the text and start matching
the corresponding pairs of characters from left to right until either all the m pairs of the characters match (then

the algorithm can stop) or a mismatching pair is encountered.

Algorithm Brute Force string match (T[O..,n-1], P[O..m-1])
// Input: An array T [0..n-1] of n chars, text

s An array P [0..m-1] of m chars , a pattern.
// Qutput: The position of the first character in the text that starts the first
s matching substring if the search is successful and -1 otherwise.

Ffor i<+— O to n-m do
j =-—0O
while j < m and P[j] = T[i+j] de
J -— Jj*1
if j = m return i
return -1

Example

Text String = { BAABABABCCA }
Pattern String ={ ABABC }

B A B A B A B C C A
B A B C
B A B C
A B A B C
A B A B
A B B C

String is matched return the starting Index -4

B A A B A B A B C C A
A B A B C

The time complexity would be analyzed by finding the number of times the basic operation j=j+1 is executed.
The inner loop will be executed a maximum of m times (j=0 to m-1).

Therefore
n—msxm-—1 - n—1rt
o 1=y m
Tn)= 0 20 =0 = (n-m)*m = 6(mn).

Where m is the length of pattern and n is the length of text.

Q3. Write an algorithm to multiply two large integers using divide and conquer and analyze its efficiency. Use
the divide and conquer strategy to multiply 6721 and 3032.

T he conventional algorithm for multiplying two n-digit integers, each of the n digits of the first
number is multiplied by each of the n digits of the second number for the total of n?digit
multiplications. (If one of the numbers has fewer digits than the other, we can pad the shorter
number with leading zeros to equalize their lengths.)

By using divide-and-conquer method , it would be possible to design an algorithm with fewer than
n? digit multiplications,

Now we apply this trick to multiplying two a-digit integers @ and » where 2 is
a positive even number. Let us divide both numbers in the middle—after all, we
promised to take advantage of the divide-and-conquer technique. We denote the
first half of the a’s digits by @, and the second half by a: for b, the notations are b,
and by, respectively. In these notations, a = ayag implies that a = a, 10"~ 4+ a, and
- . > - -
b = byby implies that b = b 1077 & b,. Therefore, taking advantage of the same
trick we used for two-digit numbers, we get
cmasbwm (@102 4 a,) « (01072 4 by)
= (a3 * b)10" + (ay + by + ag * b)H10"2 4 (ag + by)
= 210" 4+ ;10"? 4 ¢
where
¢y e ay » by s the product of their first halves,
Cp o ag + by is the product of their second halves,
¢y = (dy + agp) * (by + by) — (€3 + ¢p) i1s the product of the sum of the
a’s halves and the sum of the &'s halves minus the sum of ¢, and ¢,

If n/2 is even, we can apply the same method for computing the products ¢, .
and ¢y Thus, if # is a power of 2, we have a recursive algorithm for computing the
product of two a-digit integers. In its pure form, the recursion is stopped when »
becomes 1. It can also be stopped when we deem 2 small enough to multiply the
numbers of that size directly.

How many digit multiplications does this algorithm make? Since multiplica-
tion of n-digit numbers requires three multiplications of »/2-digit numbers, the
recurrence for the number of multiplications M(n) is

M(n)y=3Mn/2) lorn>1, M(l)=1.

Solving it by backward substitutions for n = 2* yields

'\

MY =3MR) =3B3M2) =3m2 3
= omIMA)= =3 =3

Example :
To demonstrate the basic idea of the algorithm, let us start with a case of

Four-digit integers -6721 and 3032 . These numbers can be represented as follows:
X=3421 =67*102+21 LetA=67;B=21
Y=3032 =30*102+32 LetC=30;D =32

Now let us multiply them:
X*Y= AC*10¢+[AC+ (A-B)*(D-C)+BD]*102+ BD
= 67*60 *10* +[(67 * 60) +(67 - 21) * (32-30) *10% + (21 *32)
= 4020 * 10000 + [4020 +92 + 672] *100 + 672
= 40200000 + 478400 +672
= 40679072
Algorithm multi(X, Y, n)

//Input : X & Y two long integers; n - no.of digits of X
// Output : Product of two long integers

Begin
If (n==1)
Return(X *Y)
Else

A=Left n/2 bitsof X

B =Right n/2 bitsof X

C=Left n/2 bitsof Y

D =Right n/2 bitsof Y

ml = multi(A,C)

m2 = multi(A-B, D-C)

m3 = multi(B,D)

return (m1 * 10» +(m1 + m2 +m3) * 107/2 +m3
End

Analysis

nalytis.

-

o2 {

imee muthiphicatien op N-digit numbey vequiTed three
muinplicaiony e Ng o\i%i% ne's the ne oy TecuTeance L7 W
ns 8 multiplicatens TCN) will be
TCN) =2 T(0/g) +Cn 1y
3 7(n/e) (lqnevec)
selve uting master's thesTem
T = aT(Ng)t+4n)
het® a>8 b=& d=1-
o >be
3> -
Hence T(n) = B(n'°823) = B(n’°®). This time complexity is much better than the brute force multiplication
which takes 6(n?) time for n digit multiplication.

Q4. Explain and design Prims algorithm and apply it for the given graph to find minimum cost
spanning tree .

Sol : Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding
subtrees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from the
set V of the graph’ s vertices. On each iteration, the algorithm expands the current tree by simply
attaching to it the nearest vertex not in that tree. The algorithm stops after all the graph’ s vertices
have been included in the tree being constructed.

Since the algorithm expands a tree by exactly one vertex on each of its iterations, the total number of
such iterations is n — 1, where n is the number of vertices in the graph. The tree generated by the
algorithm is obtained as the set of edges used for the tree expansions.

Here is pseudocode of this algorithm.

ALGORITHM Prim(G)

/[Prim’s algorithm for constructing a minimum spanning tree
/Mnput: A weighted connected graph G = (V, E)
/[Output: E, the set of edges composing a minimum spanning tree of G
Vy < {vg} //the set of tree vertices can be initialized with any vertex
Er — @
fori < 1to|V|—-1do
find a minimum-weight edge ¢* = (v*, ¥*) among all the edges (v, u)
such thatvisin Vyanduisin V — V,
Vi < Vi U {u*)
E; < E; U {e*}
return £

Min cost = 2+3+4+6 =15

Q5.a) Explain the greedy method and write the general algorithm for the method

Sol:
Greedy algorithms build a solution part by part, choosing the next part in such a way, that it gives an
immediate benefit. This approach never reconsiders the choices taken previously. This approach is
mainly used to solve optimization problems. Greedy method is easy to implement and quite efficient
in most of the cases. Hence, we can say that Greedy algorithm is an algorithmic paradigm based on
heuristic that follows local optimal choice at each step with the hope of finding global optimal
solution.
The greedy approach suggests constructing a solution through a sequence of steps, each expanding
a partially constructed solution obtained so far, until a complete solution to the problem is reached.
On each step—and this is the central point of this technique—the choice made must be:

> Feasible, i.e., it has to satisfy the problem’ s constraints

> Locally optimal, i.e., it has to be the best local choice among all feasible choices available on

that step
» Irrevocable, i.e., once made, it cannot be changed on subsequent steps of the algorithm

The function Select sclects an input from [| and removes it. The selected
input’s value is assigned to x. Feasible is a Boolean-valued function that
determines whether z can be included into the solution vector. The function
Union combines & with the solution and updates the objective function. The

1 Algorithmm Greedy{a.n)

2 // all : n] contains the n inputs.

3 {

4 solution :— O // Initialize the solution.
5 for i := 1 to n do

& {

7 x = Select{a);

& if Feasible(snlution. =) then

9 solution = Unmion{solution, x);
10 ¥

11 return solutiors

12 3}

Q5.b) Define Minimum spanning tree and mention its applications

Sol:

A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that contains
all the vertices of the graph. If such a graph has weights assigned to its edges, a minimum spanning tree is its
spanning tree of the smallest weight, where the weight of a tree is defined as the sum of the weights on all its
edges. The minimum spanning tree problem is the problem of finding a minimum spanning tree for a given

weighted connected graph.

D ey oy 1y

"-«,C't‘. 'xf[_)_jl xa k_i_)_,-f' \&/ _bz'

5 2 2 5\

P _\'u P N II/ ™, L

&3 @) e e)—=9
graph wiTy) =6 wiTs =9

Graph and its spanning trees, with T1 being the minimum spanning tree.

Spanning trees have many applications. For example, they can be used
to obtain an independent set of circuit equations for an electric network.
First, a spanning tree for the eleciric network 18 obtained. Let B be the
set of network edges not in the spanning tree. Adding an edge from B to

the spanning tree creates a cycle. Kirchofl’s second law is used on each
cycle to obtain a circuit equation. The cycles obtained in this way are
independent (i.e., none of these cycles can be obtained by taking a linear
combination of the remaining cycles) as each contains an edge from B that
is not contained in any other cycle. Hence, the circuit equations so obtained
are also independent. In fact, it can be shown that the cycles obtained by
introducing the edges of B one at a time mto the resulting spanning tree
form a cycle basis, and so all other cycles in the graph can be constructed
by taking a linear combination of the cycles in the basis.

Another application of spanning trees arises from the property that a
spanning tree is a minimal subgraph G’ of G such that V(G') = V(G) and G’
is connected. (A minimal subgraph is one with the fewest number of edges.)
Any counected graph with n vertices must have at least n — I edges and all
connected graphs with n — 1 edges are frees. If the nodes of G represent
cities and the Pdg?‘a represent possible communication links connecting two
utles then the minimum number of links needed to connect the n cities is

— 1. The spanning trees of G represent all feasible choices,

Q6. Find the minimum cost spanning tree for the given graph below by applying Kruskal’s algorithm. Write
the algorithm and compute minimum cost .

Kruskal’s algorithm is used for solving the minimal spanning tree problem. Spanning tree of an undirected
connected graph is its connected acyclic subgraph(tree) that contains all the vertices of the graph. If such a
graph has weights assigned to its edges, a minimum spanning tree is its spanning tree of the smallest weight,
where the weight of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree
problem is the problem of finding a minimum spanning tree for a given weighted connected graph.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph G = (V, E) as an acyclic
subgraph with [V| — 1 edges for which the sum of the edge weights is the smallest. Consequently, the algorithm
constructs a minimum spanning tree as an expanding sequence of subgraphs that are always acyclic but are not
necessarily connected on the intermediate stages

Tree edges Sorted list of edges INustration
be ef ab bf of af df ae od de
1 2 3 4 4 5 5 6 6 8
b bc ef ab bf of af df ae od de
1 1 2 3 4 4 5 5 6 6 8
ef bc ef ab bf of af df ac cd de
2 1 2 3 4 4 5 5 6 6 8
ab bc ef ab bf of af df ae od de
3 i 2 3 4 4 5 5 6 6 8
bf bc ef ab bf of af df ae od de
4 1 2 3 4 4 5 5 6 6 8
df
5

ALGORITHM Kruskal{G)
fMKruskal’s algorithm for constructing a minimum spanning tree
fMnput: A weighted connected graph G = {V, E}
ffOutput: Ey. the set of edges composing a minimum spanning tree of G
sort £ in nondecreasing order of the edge weights wieg,)<---=< w{e,—lﬁ_)

Er «— @, ecounter «— 0 Minitialize the set of tree edges and its size
k10 ffinitialize the number of processed edges
while ecounter = |V| — 1 do

k—k+1

if Ex U {e;,} is acyclic
Ey — Eqf) {-E','tI:
return E

ecountfer «— ecounter 1+ 1

Q 7 Write and analyze the Huffman coding algorithm. Show the tree and code for the set of
symbols given below along with their relative frequency.

symbol ‘ A B C D
frequency ‘ 035 01 02 02 015

Huffman’s algorithm

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given. Record the frequency
of each symbol in its tree’s root to indicate the tree’s weight. (More generally, the weight of a tree will be equal
to the sum of the frequencies in the tree’s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the smallest weight
(ties can be broken arbitrarily, but see Problem 2 in this section’s exercises). Make them the left and right
subtree of a new tree and record the sum of their weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It

defines —in the manner described above —a Huffinan code.

[il
0.1 015 0.z 0.2 035
B _ C D A
- - .
0.2 0.2 .aa’_z“_.;;ﬁ 0.35
C D /\/\ A
0.1 015

B

The resulting codewords are as follows:

symbol | A B C D -
frequency (.35 0.1 0.2 0.2 0.15
codeword 11 100 00 0| 101

Hence, DAD is encoded as 011101, and
10011011011101 is decoded as BAD_AD.

Q8. Explain the Dijkstra’s single source shortest path algorithms and analyze its time complexity.
Source vertex ‘a’.

[|

Dijkstra’s algorithm is an algorithm for solving the single-source shortest-paths problem: for a given vertex
called the source in a weighted connected graph with non negative edges, find shortest paths to all its other
vertices. Some of the applications of the problem are transportation planning, packet routing in communication
networks finding shortest paths in social networks, etc. First, it finds the shortest path from the source. to a
vertex nearest to it, then to a second nearest, and so on. In general, before its ith iteration starts, the algorithm
has already identified the shortest paths to 1 — 1 other vertices nearest to the source. These vertices, the source,
and the edges of the shortest paths leading to them from the source form a subtree Ti of the given graph. The set
of vertices adjacent to the vertices in T called “fringe vertices”; are the candidates from which Dijkstra’s
algorithm selects the next vertex nearest to the source. To identify the ith nearest vertex, the algorithm
computes, for every fringe vertex u, the sum of the distance to the nearest tree vertex v and the length dv of the
shortest path from the source to v and then selects the vertex with the smallest such d value. d indicates the
length of the shortest path from the source to that vertex till that point. We also associate a value p with each
vertex which indicates the name of the next-to-last vertex on such a path, . After we have identified a vertex u*
to be added to the tree, we need to perform two operations.

The psuedocode for Dijkstra’s is as given below:

® Move u* from the fringe to the set of tree vertices.

B For each remaining fringe vertex u that is connected to u* by an edge of
weight w(u*, u) such that d,« + w(u*, u) < d,, update the labels of u by u*
and d = + wiu*, u), respectively.

ALGORITHM Dijkstra(G, s)

{/Dijkstra’s algorithm for single-source shortest paths
{Mnput: A weighted connected graph G = (V, E} with nonnegative weights

i and its vertex s
{/Output: The length d, of a shortest path from s to v
i and its penultimate vertex p, for every vertex v in V

Initialize(Q) /fnitialize priority queue to empty
for every vertex v in V
d, +— 00, p, <« null
Insert(Q, v, d,) /finitialize vertex priority in the priority queue
d, « 0, Decrease(Q, s, d,) [lupdate priority of s with d,
L’T «—
fori «— Oto |V|—1do
u* «— DeleteMin(Q) //delete the minimum priority element
]rl.-':r -— 1_.-".;. ul {u*}
for every vertex u in V — V- that is adjacent to «* do
ifd,s +w(u* u) <d,
dy «—d +wiu*, u), p, —u*
Decrease(Q. u, d,)

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data structures used for implementing the priority
queue and for representing an input graph itself.

Graph represented by adjacency matrix and priority queue by array:

In loop for initialization takes time V| since the insertion into the queue would just involve appending the
vertices at the end(since it is an array implementation). For the second loop, the loop runs |V| times. Each time
the DeleteMin operation would take a maximum of 6(|V|) time since it would involve finding the vertex in the
array with min d value, for a total time of |V|2. The for loop (for iupdating the neighbor vetices) would run |V/|
times again. However the Decrease would take 0(1) time because the index of the vertex would be known.
Thus the total time complexity is 0(|V|2).

Graph represented by adjacency list and priority queue by binary heap:

All heap operations take 0(lg|V|) time. Thus the first loop runs [V| times and each time the Insert would take
0(1g|V|) time. The second loop runs |V| times and the DeleteMin would again take Ig|V| time. Thus the total
number of time DecreaseMin would run across all iterations is 8(VIg|V|). In the second loop the basic operation
is Decrease(Q,u,du) whoch is run the maximum number of times. Across all iterations using adjacency list,
since for each vertex Decrease is called for a maximum of all its adjacent vertices, the number of times
Decrease is invoked |E| times. For each time it is onvoked , it takes O(Ig|V|) time to execute. Thus the total time
complexity is O((|E[+|V|)Ig|V]).

Graph represented by adjacency list and priority queue by fibonacci heap:

The time taken in this case O(|E|+|V|Ig|V)).

Tree vertices Remaining vertices

al—,) bkia, 3) c(—, o) dia, T e{—, oo)
b(a, c(b. 3+ 4) dib, 3 + 2} e(—, oc)
dib, 5) e(b, T} eid, 54 4)

cib. T) eld, 9)

e(d, 9)

The shortest paths (identified by following nonnumeric labels backward from a
destination vertex in the left column to the source) and their lengths (given by
numeric labels of the tree vertices) are as follows:

fromatob: a—b of length 3
fromatod: a—b—d of length 5
fromatoc: a—b—c of length 7

fromatoe: a—b—d—e of length9

Q9. Define Binary Tree .Write algorithms for inorder, preorder and postorder traversal of a binary tree. Give

examples for all three .

Sol:
Def : A binary tree is a special type of tree in which every node or vertex has at most two children that is
either no child node or one child node or two child nodes

root - 25
/ \.
15 .

50
B B G
10 70
N\ N\ /
66

N\
90

/

22
! 4
4 12 18

24 31 44

Tree traversal techniques
» Inoder Traversal
» Pre-order Traversal
» Post orderTraversal

nOrderfroot)vists nodes nthe folowing order
4,10,12,15,18,22, 24, 25, 31, 35, 44, 50, 66, 70, 90

APre-order traversal visits nodes in the following order.
25,15,10,4,12, 22,18, 24,50, 35, 31, 44,70, 66, 90

APost-order traversal visits nodes in the following order.
4,12,10,18, 24, 22,15, 31, 44, 35, 66, 90, 70, 50, 25

Algorithm inorder(T)
Begin
if T not empty
inorder(TL)
print root(T)
inorder(TR)
End
Algorithm preorder(T)
Begin
if T not empty
print root(T)
preorder(TL)
preorder(TR)
End
Algorithm postorder(T)
Begin
if T not empty
postorder(TL)
postorder(TR)
print root(T)
End

Pre-order
— If the tree T consists on only the root r, then r
is the preorder traversal of T.

- K Ty.T2,..., T, are the subtrees rooted at r
from left to right, then the preorder traversal
comprises of visiting r, followed by T, in pre-
order, then T in preorder and lastly Ty, in pre-
order.

« InOrder:

— If the tree T consists on only the root r, then r
is the inorder traversal of T,

-~ If T1,T2,.-., T, arc the subtrees rooted at r
from left to right, then the preorder traversal
comprises of visiting T in inorder. followed by
r in inorder, then T; in inorder and lastly T, in
inorder,

« PostOrder:

— Il the tree T consists on only the rool r, then r
is the postorder traversal of T.

- If T, Taz..., Tn are the subtrees rooted at r
from left to right, then the preorder traversal
comprises of visiting T, in postorder, followed

s

Q10. Explain Warshall’s algorithm for the finding the transitive closure of a graph.

— o oo
S oo
_ o o O

0
1
0
0.

ALGORITHM Warshall(A[1..n, 1..n])

[Mmplements Warshall’s algorithm for computing the transitive closure
[[Input: The adjacency matrix A of a digraph with » vertices
[{Output: The transitive closure of the digraph

R A

fork — 1tondo
fori — 1tondo
for j — 1ton do
R':E’[f_, j] — Ri&—‘l][n J] or {R[k_“[f_. k] and Rf&—lr[L j]}

return R'™

G)

Fi~1 1Imsre A 4

~a b ¢ d
al[o] 1 0 0]
E‘[O]—b o] 0 0 1
“c||0] 0O 0O O
di[1] 0 1 0
:3 b ¢ d
al 0 [1] 0o o©
P [0 Jo] 0 1]
c|] 0 [0l O O
dl 1 [1] 1 0
:a b ¢ d
al 0 1 [0] 1
bl 0 0 |0 1

2) =
A= o 0 |0] O]
dl 1 1 [1] 1
:a b ¢ d
al 0 1 0 [71]
pa_ b 0 0 0|1
T ¢/l 0 0 0|0
di[1 1 1|1
~a b c¢ d
al 1 1 1 1
bl 1 1 1 1

(4 =
A c/l 0 0 0 O
dl 1 1 1 1

[y [e L I QY pp——

1's reflect the existence of paths

with no intermediate vertices

(R0 is just the adjacency matrix);

boxed row and column are used for getting R{1).

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 1, 1.e., just vertex a

(note a new path from d to b);

boxed row and column are used for getting R12).

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 2, 1.e.,, aand b

(note two new paths);

boxed row and column are used for getting R'3.

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 3, i.e., a, b, and ¢

(no new paths);

boxed row and column are used for getting R4,

1's reflect the existence of paths
with intermediate vertices numbered
not higher than 4, i.e., a, b, ¢, and d
(note five new paths).

L e e L Bl ... ArFr_ _ ___ T._

