INST USN 1][C E\\\
INSTITUTE OF
TECHNOLOGY
Internal Assessment Test 2 — October 2019
Sub: Object Oriented Modeling and Design Patterns Code: | 17MCA51
Max) .
Date: | 12-10-19 | Duration: 90 mins Marks: | 50 Sem: |VA&B Branch: MCA
Note: Solution for Total Marks: 50
OBE
Marks -5 RrpT
PART-1
10 CO2 L2

1 What is aggregation and composition? Give their respective UML notations,

with an example?

Aggregation implies a relationship where the child can exist independently of the
parent. Example: Class (parent) and Student (child). Delete the Class and the
Students still exist.

Composition implies a relationship where the child cannot exist independent of
the parent. Example: House (parent) and Room (child). Rooms don't exist
separate to a House.

Enginelns pection Car
Engine Wheel
Coardlist
Ep_size int=
O Cardlist
OCavdlizH)
O Cardlist %
Ve :,-,-;-“ : _:C_- anck
B _cortert A cperatl ; Dech
ord ol e Qopriator= . | |
w2 & e o O
A f: | & _corterts | Cad “—0 Beit /
o{\" n -‘ Ij -.;_—__ = ! ‘EIE‘-}”
70-.ul. n’.-U”‘ ot
Qgelf)

|

| &

iAggregation vs Composition

1 0.*
0 1
R Py
-
1 1
Keyhoard

= Composition
= a Tree mighthave
= 0 or many Leaves at a time

= Aggregation

a Computer may be attched to
. 0 or more Printers

= at anytime a Printer is connected to

+ 0 or more Computers = over time a computer may use a given
= over time a computer may Printer

+ use a given Printer = Tree still exist even if it has no Leaves at all
« the printer exist = the Leaves cannot exist without the Tree

= even if there are no Computers attached =« the Leaves are dependent on the Tree

« the Printeris
= independent from the Computer

09.10.2015 Object Oriented Analysis & Design & UML (Unified Modeling Language) 23

What is an event? Explain different types of events, with an example.

An event is an occurrence at a point in time, such as user depresses left button or
flight 123 departs from Chicago. Two events that are casually unrelated are said
to be concurrent.

There are several kinds of events. The most common are the signal event, the
change event and the time event.

Different kind of events:

1. Signal Event
2. Change Event
3. Time Event

Signal Event: A signal is an explicit one-way transmission of information from
one object to another.

Change Event: A change event is an event that is caused by the satisfaction of a
boolean expression.

Time Event: A time event is an event caused by the occurrence of an absolute
time or the elapse of a time interval.
PART-II

Draw the use-case diagram, for vending machine. What are the guidelines
needed to be followed while drawing use-case models.

10

10

COo2 L2

CO3 L3

;' Use case dingram for a vending machine
A sy soCanc e o s

T’ 3
Verdeiz Sacione o
ey -1 o
by e ¥
| TE T Nt s anthy bovudts
1 N {A
“wr
whrdahd JA Co 1o co I

malakieanse mibhitberese boaapdnec b

Hopalr eochrecian Joolad 1300 ootemet Lix

-
L L A .'-1"
famr

B

bt B

Ky e

Stock cherk 15501

Guidelines for use case models

Determine the system boundary

Ensure that actors are focused

Each use case must provide value to user
Relate use case and actor

Remember that use cases are informal
Use cases can be structure

Explain activity diagram, with the UML notations. Given an example. 5 Co3 L2

An activity diagram shows the sequence of steps that make up a complex process,
such as an algorithm or workflow.

An activity diagram can show both sequential and concurrent flow of control.

Fill Order Send Invoice

[rush order] [else]

v

Arrange Overnight Arrange Regular .
Delivery j [Delivery j Receive Payment

e

b Mention the guidelines for activity models. 5> CO3 L2

Don’t misuse activity diagrams

Level diagrams

Be careful with branches and conditions
Be careful with concurrent activities
Consider executable activity diagrams

PART-III

Discuss the significance of state diagram and draw the state diagram for
telephone line system.

10 CO3 L3

Figure 5.5 Stste diagram for phone line

Write guidelines for sequence model and draw the sequence diagram for cash
withdrawal process structure in ATM system.

10

CO3

L3

Bank Client ATM Machine

1 : Request Kind()

2 1 Enter Kind()

3 Request Amount()

||

4 1 Enter Amount()

s S S S S ST T

A i

Account

5 ¢ Process Transaction()

R Y |

9.: Dispense Cash() |:I<

o
L) 10:Request Take Cash()
e
11 : Take Cash()

IE|

12 1 Requst Continuation()

H

13 : Terminate()

Jococany

14; Print Receipt()

Sequence Models

8 1 Transaction Successfull)

6 1 Withdraw from Checking Account()

Checkin Account

Prepare at least one scenario per use case

Abstract the scenarios into sequence diagrams

Divide complex interactions

Prepare a sequence diagram for each error condition

Draw the use case diagram for library management system and describe the
guidelines of use case diagram

PART-IV

7 1 Withdraw Successful()

10

CO3

L3

Systam

B | =

I ' Corchoke s

2 (Check Avalality of Hook
Lbranan e

{ rotwnBeok)

"

Saird aniog Books ’

Guidelines for use case models

Determine the system boundary

Ensure that actors are focused

Each use case must provide value to user
Relate use case and actor

Remember that use cases are informal
Use cases can be structure

Draw an activity diagram for stock trade processing.

10

CO3

L3

% verify arder

l

execute oraer

[Failer] l/

debit account \/

send failure notice update online portfolio \L send confirmation

settle trade

close order - \(@)
o/

PART-V
Explain the Whole part design pattern in detail 10 CO5

The Whole-Part design pattern helps with the aggregation of components that
together form a semantic unit. An aggregate component, the Whole, encapsulates it
constituent components, the Parts, organizes their collaboration, and provides a
common interface to its functionality. Direct access to the Parts is not possible.

Context:
Implementing aggregate objects.
Problem:

In almost every software system objects that are composed of other objects exist.
For example, consider a molecule object in a chemical simulation system.

In this example, a molecule object would have attributes such as its chemical
properties, and methods, such as rotation.

These attributes and methods refer to the molecule as a semantic unit, and not to the
individual atoms of which it is composed.
The combination of parts makes new behavior emerge known as emergent behavior.

Solution:

* Introduce a component that encapsulates smaller objects & prevents clients
from accessing these constituent parts directly.

» Define an interface for the aggregate that is the only means of access to the
functionality of the encapsulated objects.

» Allow the aggregate to appear as a semantic unit

L4

10

Structure:

Class Collaborators Class Collaborators
Whole ¢ Part Part -
Responsibility Responsibility
* Aggregates several * Represents
smaller objects. particular object
* Provides services and its services,
bullt on top of part
objects.
v Acts as a wrapper
around its
constituent parts.
Briefly write about the structure and dynamics of Command Processor 10 CO5

Abstract command component defines the interface of all command objects.
A minimum of the interface is to provide a procedure to execute a command.
Additional services require further interface procedure for all command objects.

Each user function we derive a command component form the abstract command.

Class
e Abstract Command

Responsibility
« Defines a uniform interface to execute commands
« Extends the interface for services of the command

processor, such as undo and logging

Collaborators

Class
¢ Command
Responsibility

e Encapsulates a function request
o Implements interface of abstract command

L4

e Uses suppliers to perform a request
Collaborators

o Supplier

Controller represents the interface of the application, it accepts request such as
"paste text" and creates the corresponding command objects

Command objects then go to Command Processor for processing

In essense, Controller is like a server waiting for request to map to Command
objects

Command Processor manages command objects, schedule them and starts their
execution, it is independent of specific commands because it only uses the abstract
command interface

Supplier components provide most of the functionality required to execute concrete
commands

When an undo mechanism is required, a supplier usually provides a means to save
and restore its internal state

Class
e Controller
Responsibility
e Accepts service requests
o Translates requests into commands
e Transfers commands to command processor

Collaborators

e Command Processor
¢ Command

Class
e Command Processor
Responsibility
o Activates command execution
e Maintains commands objects

« Provides additional services related to
command execution

Collaborators

e Abstract Command

Dynamics
Implement an undo mechanism after Capitalizing some text

The controller accepts the request from the user within its event loop and creates a
‘capitalize’ command object

The controller transfers the new command object to the command processor for
execution and further handling

The command processor activates the execution of the command and stores it for
later undo

The capitalize command retrieves the currently-selected text from its supplier,
stores the text and its position in the document, and asks the supplier to actually
capitalize the selection

After accepting an undo request, the controller transfers his request to the command
processor. The command processor invokes the undo procedure of the most recent
command

The capitalize command resets the supplier to the previous state, by replacing the
saved text in its original position

If no further activity is required or possible of the command, the command
processor deletes the command object.

