
 

CMR  
INSTITUTE OF 
TECHNOLOGY 

 

USN 1 C         

 
 Internal Assessment Test 2 – October 2019 

Note: Solution for                                               Total Marks: 50  

 
 Marks 

OBE 

 CO RBT 

 
  
  1. 

 

 

PART-1 

What is aggregation and composition? Give their respective UML notations, 

with an example?                                           

 

Aggregation implies a relationship where the child can exist independently of the 

parent. Example: Class (parent) and Student (child). Delete the Class and the 

Students still exist. 

 

Composition implies a relationship where the child cannot exist independent of 

the parent. Example: House (parent) and Room (child). Rooms don't exist 

separate to a House. 

  

 

 

 

 

10 

 

CO2 

  

  L2 

Sub:                                  Object Oriented Modeling and Design Patterns Code: 17MCA51 

Date: 12-10-19 Duration: 90 mins 
Max 

Marks:  50 
Sem: V A & B Branch: MCA 



 

 
2.  

What is an event? Explain different types of events, with an example. 

 

An event is an occurrence at a point in time, such as user depresses left button or 

flight 123 departs from Chicago. Two events that are casually unrelated are said 

to be concurrent. 

There are several kinds of events. The most common are the signal event, the 

change event and the time event. 

 

Different kind of events: 

1. Signal Event 

2. Change Event 

3. Time Event 

 

Signal Event: A signal is an explicit one-way transmission of information from 

one object to another. 

Change Event: A change event is an event that is caused by the satisfaction of a 

boolean expression. 

Time Event: A time event is an event caused by the occurrence of an absolute 

time or the elapse of a time interval. 

10 CO2 L2 

 
3. 

 

 

 PART-II 

Draw the use-case diagram, for vending machine. What are the guidelines 

needed to be followed while drawing use-case models. 

 

10 

 

CO3 

 

L3 



 

 

Guidelines for use case models 

 

Determine the system boundary 

Ensure that actors are focused 

Each use case must provide value to user 

Relate use case and actor 

Remember that use cases are informal 

Use cases can be structure 

 

 
4. a Explain activity diagram, with the UML notations. Given an example. 

An activity diagram shows the sequence of steps that make up a complex process, 

such as an algorithm or workflow. 

 

An activity diagram can show both sequential and concurrent flow of control. 

 

5 CO3 L2 



 
 

 . 
b Mention the guidelines for activity models. 

 

Don’t misuse activity diagrams 

Level diagrams 

Be careful with branches and conditions 

Be careful with concurrent activities 

Consider executable activity diagrams 

 

5 CO3 L2 

 

  

  
 
  5 

 PART-III 

Discuss the significance of state diagram and draw the state diagram for 

telephone line system.                                             

 

 

10 

 

CO3 

 

L3 



 
6  Write guidelines for sequence model and draw the sequence diagram for cash 

withdrawal process structure in ATM system. 

 

 

10 

  

CO3 

 

L3 



 

Sequence Models 

Prepare at least one scenario per use case 

Abstract the scenarios into sequence diagrams 

Divide complex interactions 

Prepare a sequence diagram for each error condition 

 
 

7 
 

 

 

PART-IV 

Draw the use case diagram for library management system and describe the 

guidelines of use case diagram       

 

 

 

10 

 

CO3 

 

L3 



 
Guidelines for use case models 

 

Determine the system boundary 

Ensure that actors are focused 

Each use case must provide value to user 

Relate use case and actor 

Remember that use cases are informal 

Use cases can be structure 

 

 
  8    Draw an activity diagram for stock trade processing. 

 

10 CO3 L3 



  
 

9 
  

 

PART-V 

Explain the Whole part design pattern in detail 

 

The Whole-Part design pattern helps with the aggregation of components that 

together form a semantic unit. An aggregate component, the Whole, encapsulates it 

constituent components, the Parts, organizes their collaboration, and provides a 

common interface to its functionality. Direct access to the Parts is not possible. 

 

Context:  

 

Implementing aggregate objects. 

 

Problem:  

 

In almost every software system objects that are composed of other objects exist. 

For example, consider a molecule object in a chemical simulation system. 

 In this example, a molecule object would have attributes such as its chemical 

properties, and methods, such as rotation. 

 

These attributes and methods refer to the molecule as a semantic unit, and not to the 

individual atoms of which it is composed.  

The combination of parts makes new behavior emerge known as emergent behavior.  

 

Solution: 

 

• Introduce a component that encapsulates smaller objects & prevents clients 

from accessing these constituent parts directly. 

• Define an interface for the aggregate that is the only means of access to the 

functionality of the encapsulated objects. 

• Allow the aggregate to appear as a semantic unit 

 

 

10 

 

CO5 

 

L4 



Structure: 

 

 
10  Briefly write about the structure and dynamics of Command Processor 

  

Abstract command component defines the interface of all command objects. 

A minimum of the interface is to provide a procedure to execute a command. 

Additional services require further interface procedure for all command objects. 

Each user function we derive a command component form the abstract command. 

Class 

 Abstract Command 

Responsibility 

 Defines a uniform interface to execute commands 

 Extends the interface for services of the command 

processor, such as undo and logging 

Collaborators 

 - 

  

Class 

 Command 

Responsibility 

 Encapsulates a function request 

 Implements interface of abstract command 

10 CO5 L4 



 Uses suppliers to perform a request 

Collaborators 

 Supplier 

Controller represents the interface of the application, it accepts request such as 

"paste text" and creates the corresponding command objects 

Command objects then go to Command Processor for processing 

In essense, Controller is like a server waiting for request to map to Command 

objects 

Command Processor manages command objects, schedule them and starts their 

execution, it is independent of specific commands because it only uses the abstract 

command interface 

Supplier components provide most of the functionality required to execute concrete 

commands 

When an undo mechanism is required, a supplier usually provides a means to save 

and restore its internal state 

Class 

 Controller 

Responsibility 

 Accepts service requests 

 Translates requests into commands 

 Transfers commands to command processor 

Collaborators 

 Command Processor 

 Command 

  

Class 

 Command Processor 

Responsibility 

 Activates command execution 

 Maintains commands objects 

 Provides additional services related to 

command execution 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Collaborators 

 Abstract Command 

Dynamics 

Implement an undo mechanism after Capitalizing some text 

The controller accepts the request from the user within its event loop and creates a 

'capitalize' command object 

The controller transfers the new command object to the command processor for 

execution and further handling 

The command processor activates the execution of the command and stores it for 

later undo 

The capitalize command retrieves the currently-selected text from its supplier, 

stores the text and its position in the document, and asks the supplier to actually 

capitalize the selection 

After accepting an undo request, the controller transfers his request to the command 

processor. The command processor invokes the undo procedure of the most recent 

command 

The capitalize command resets the supplier to the previous state, by replacing the 

saved text in its original position 

If no further activity is required or possible of the command, the command 

processor deletes the command object. 

 

 

 


