
Sub: Programming Using C# and .Net
Date: 12/10/2019 Duration: 90 min’s Max Marks: 50 Sem 5th

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

1
What is namespace? Explain the steps involved in creating a namespace and illustrate few common
namespaces
A namespaces is wrapper that is wrapped around one or more structural elements to make them unique and
differentiated from other elements.

To declare namespace in C# .Net has a reserved keyword “namespace”. If a new project is created in Visual

Studio .NET it automatically adds some global namespaces. These namespaces can be different in different

projects. But each of them should be placed under the base namespace “System”. In C# all namespaces
should import by using keyword, which can tell the compiler which namespaces and libraries of the code
you want to use in the system.

The System namespace:

Within System we can find numerous useful types dealing with built in data, mathematical computations,
random number generation, environment variables, and garbage collection, as well as a number of
commonly used exceptions and attributes. So System is a root namespace.

The following are some of the common namespaces provided by the .NET Framework class library:

Namespaces Meaning
These namespaces define a number of stock container objects (ArrayList,

System.Collections Queue, and so forth), as well as base types and interfaces that allow you to
System.Collections.Generic build customized collections. As of .NET 2.0, the collection types have

been extended with generic capabilities
System.Data System.Data.Odbc

These namespaces are used for interacting with databases using ADO.NET.
System.Data.OracleClient
System.Data.OleDb
System.Data.SqlClient

System.Diagnostics
Here, you find numerous types that can be used to programmatically debug
and trace your source code.

System.Drawing
Here, you findnumerous types wrapping graphical primitives such as

System.Drawing.Drawing2D
bitmaps, fonts, and icons, as well as printing capabilities.

System.Drawing.Printing
System.IO

Include file I/O, buffering, and so forth. As of .NET 2.0, the IO namespaces
System.IO.Compression

now include support compression and port manipulation.
System.IO.Ports

System.Net Contains types related to network programming (requests/responses,
sockets, end points, and so on).

System.Reflection Define types that support runtime type discovery as well as dynamic

System.Reflection.Emit creation of types.

System.Runtime.InteropServices
Provides facilities to allow .NET types to interact with “unmanaged code”
(e.g., C-based DLLs and COM servers) and vice versa.

System.Runtime.Remoting
Defines types used to build solutions that incorporate the .NET remoting
layer.
Security is an integrated aspect of the .NET universe. In the security-centric

System.Security namespaces you find numerous types dealing with permissions,
cryptography, and so on.

System.Threading This namespace defines types used to build multithreaded applications.
System.Web A number of namespaces are specifically geared toward the development of
System.Web.Security .NET web applications, including ASP.NET and XML web services.

2W Write a C# program to demonstrate of Abstract classes and abstract methods.
Abstract Classes:

Classes can be declared as abstract by putting the keyword “abstract” before the class definitions.

The main purpose of the Abstract classes is to make classes that only represent base classes, and don’t

want anyone to create objects of these class types. An abstract class cannot be instantiated because

cannot create an object of the class.

An abstract class can contain either

abstract methods or non-abstract

methods. Abstract members do not

have any implementation in the

abstract class, but the same has to

be provided in its derived class.

Abstract methods:

Abstract methods have no implementation, so the method definitions is followed by a semicolon instead of a
normal method block. Derived classes of the abstract class must implement all abstract methods.

 Restricts its implementation in an abstract derived class

 Allows implementation in a non-abstract derived class

Shape obj=new Shape();
//Can’t be instantiated

public abstract class Shape{
//Class Definition

}

Example:
public abstract class

Shape{ public abstract void
Draw();
public void NonAbstractMethod()
{ Console.WriteLine("NonAbstract
Method");

}

Syntax:
public abstract void Draw();

 Requires declaration in an abstract class only

 Restrict declaration with static and virtual keywords
 Allows you to override a virtual method.
using System;
namespace Chapter4_Examples{

abstract class
absClass{

//A Non abstract method
public int AddTwoNumbers(int Num1, int

Num2){ return Num1 + Num2;
}
//An abstract method to be overridden in derived class
public abstract int MultiplyTwoNumbers(int Num1,int Num2);

}

//A Child Class of absClass
class absDerived:absClass{

//using override keyword,implementing the abstract method MultiplyTwoNumbers
public override int MultiplyTwoNumbers(int Num1,int

Num2){ return Num1 * Num2;
}

}
class AbstractDemo{

static void Main(string[] args)
{ absDerived calculate = new
absDerived();
int added = calculate.AddTwoNumbers(10,20);
int multiplied = calculate.MultiplyTwoNumbers(10,20);
Console.WriteLine("Added : {0}, Multiplied : {1}", added, multiplied);
Console.ReadLine();

}
}

}

3 Write a C# program to demonstrate Indexer Overload.

An indexer is used to treat an object as an array. It is used to provide index to an object to obtain values
from the object.

 Implementing an indexer requires you to use brackets ([]) with an object to get and set a value

of the object.

 Indexer are declared as properties, with the difference that in case of indexers, you do not need

to provide name to them. You need to use the “this” keyword to define an indexer.

using System;
namespace Class_Demos{
class
MyClass{ string[
] mydata; int
arrsize;
public MyClass(int size){

arrsize = size;
mydata = new string[size];
for (int i = 0; i < size; i++)

mydata[i] = "DataValue";
}

public string this[int position]
{ set{ mydata[position] = value;
} get{return (mydata[position]);
}

}
public string this[string data]{
set{
for (int i=0; i<arrsize; i++){

if (mydata[i] == data)
mydata[i] = value;

}
}

Continued...
get{

int count = 0;
for (int i = 0; i < arrsize; i++)

{ if (mydata[i] == data)
count = count + 1;

}
return count.ToString();

}
}

}
class

IndOverload{ static
void Main(){

int size = 10;
MyClass obj=new MyClass(size);

obj[1] = "Hello"; obj[3]
= "Good Morning"; obj[7]
= "Welcome";
obj["DataValue"] = "Have a nice day";

for (int i = 0; i < size; i++)
Console.WriteLine("obj[{0}]: {1}", i, obj[i]);

Console.WriteLine("\n\nNumber of \"Have a nice day\"entries:{0}",
obj["Have a nice day"]);

Console.Read();
}

}
}

public interface Channel
{

void Next();
}

4 Write a C# program to explain interface inheritance and implementation of interfaces.

Interfaces:

“An interface is a collection of data members and member functions, but it does not implement them”.

Interface are introduced to provide the feature of multiple inheritance to classes.

Multiple inheritance is the feature
of OOP which allows a class to
inherit from multiple classes. The
methods defined in an interface do
not have implementation, they only
specify the parameters that they
will take and the types of values
they will return.

Example:
using System;
namespace Class_Demos{
public interface Channel{

void Next();
void Previous();

}
public interface Book{

void Next();
void Chapter();

}

class InterfaceDemo:Channel, Book{
void Channel.Next(){

Console.WriteLine("Channel Next");
}
void Book.Next()

{ Console.WriteLine("Book
Next");

}
public void Previous()

{ Console.WriteLine("Previous"
);

}
public void Chapter()

{ Console.WriteLine("Chapter"
);

}
static void Main(){
InterfaceDemo ind = new InterfaceDemo();
((Book)ind).Next();//invoking Book method
ind.Previous();
ind.Chapter();
Console.Read();
}

}
}

3.1 Implementation of Interfaces and Inheritance:

interface <Interface_Name> {

//Abstract method declaration in interface body

}

When an interface is implemented by a base class, then the derived class of the base class automatically
inherits method of the interface. You can initialize an object of the interface by type casting the object of
the derived class with the interface itself.

Example We have created two interface BaseInterface and DerivedInterface. The
BaseInterface interface is inherited by the DerivedInterface interface. Then the
InterfaceImplemeter class implements the DerivedInterface interface

using System; namespace
Class_Demos{

interface BaseInterface{ void
GetPersonalDetail(); void
GetContactDetail();

}
interface

DerivedInterface:BaseInterface{ void
ShowDetail();

}
class InterfaceImplementer :

DerivedInterface{ string name;
long phonenum;
public void GetPersonalDetail()

{ Console.WriteLine("Enter your Name");
name = Console.ReadLine();

}
public void GetContactDetail()

{ Console.WriteLine("Enter your Phone Number");
phonenum = int.Parse(Console.ReadLine());

}
public void ShowDetail(){ Console.WriteLine("\nYour

Details:"); Console.WriteLine("Name: " + name);
Console.WriteLine("Phone Number: " + phonenum);

}
}
class

InterfaceDemo1{ stati
c void Main(){

InterfaceImplementer Myobj = new InterfaceImplementer();
Myobj.GetPersonalDetail();
Myobj.GetContactDetail();
Myobj.ShowDetail();

Console.ReadLine();
}

}

sample s1=new sample(m.add);
s1 += m.sub;
s1 += m.mul;

}

5
What are delegates?Explain the concepts of multicast delegates with an example
1.1 Creating and using Delegates:

Following are the four steps to create and use a delegate in your program:

i. Declaring a delegate
ii. Defining delegate methods

iii. Creating delegate objects
iv. Invoking delegate objects

i. Declaring a delegate:

A delegate represents a class type, it can be declared at any place where a class can be defined – outside all
classes or inside a class.

Syntax:

Where,

Access-modifier delegate <return-type>
delegate_name(arg1, arg2, … argn);

Access-modifier –that controls the accessibility of the delegate and can be public, private, protected or
internal.
delegate – is a keyword indicates the declaration belongs to a delegate
return-type – return type of the delegate delegate-name – is the name of the delegate
Parameter-list – the list of parameter that the delegate

takes. Example: public delegate void Compute(int

x, int y);

Multicasting with Delegates:

A delegate object to hold references of and invoke multiple methods. Such objects are called multicast
delegates or combinable delegates.

using System; namespace
Class_Demos{

delegate void sample(int a,int b);
class MCDelegates{

void add(int n1, int n2){
Console.WriteLine(n1+ "+" +n2+ "=" + (n1 + n2));

}
void mul(int n1, int n2) {

Console.WriteLine(n1 + "*" + n2 + "=" + (n1 * n2));
}
void sub(int n1, int n2){

Console.WriteLine(n1 + "-" + n2 + "=" + (n1 - n2));
}
static void Main(){

MCDelegates m=new MCDelegates();
sample s1=new sample(m.add); s1 +=
m.sub;
s1 += m.mul;

s1(10, 20);
Console.ReadKey();

}
}

}
6 Explain how custom exceptions will be created in C# with suitable example.

Custom Exception(ApplicationException):

The ApplicationException is
thrown by a user program, not by
the common language runtime. If
you are designing an application
that needs to create its own
exceptions.

To create your own exception class, here are some important recommendations:
 Give a meaningful name to your Exception class and end it with Exception.
 Throw the most specific exception possible.
 Give meaningful messages.
 Do use InnerExceptions.
 When wrong arguments are passed, throw an ArgumentException or a subclass of it, if necessary.

Building Custom Exceptions, Take One:

Any custom exception we create needs to derive from the System.Exception class. You can either derive
directly from it or use an intermediate exception like SystemException or ApplicationException as base
class.

using System;
namespace Chapter5_Examples {
class TestException :

ApplicationException{ public override
string Message{

get{
return "This exception means something bad happened";

}
}

}

public class ApplicationException :
Exception{

//Various constructors.
}

class CusException
{ static void Main(){
try{

throw new TestException();
}
catch(TestException ex)

{ Console.WriteLine(ex);
}
Console.ReadLine();

}
}

}

7
Describe the architecture of ADO.NET with a neat diagram.

ADO.NET stands for ActiveX Data Objects and is part of the .NET framework technology that allows
to access and modify data from different data sources. It supports many types of data sources such as
Microsoft SQL Server, MySQL, Oracle, and Microsoft Access.

The .NET Framework provides a number of data providers that you can use. These data providers are used
to connect to a data source, executes commands, and retrieve results.

Various Connection Architectures: There are the following two types of connection architectures:

 Connected architecture: the application remains connected with the database throughout the
processing.

 Disconnected architecture: the application automatically connects/disconnects during the
processing. The application uses temporary data on the application side called a DataSet.

 The four Objects from the .Net Framework provides the functionality of Data Providers in the ADO.NET.
They are

i. The Connection Object provides physical connection to the Data Source.

ii. The Command Object uses to perform SQL statement or stored procedure to be executed at
the Data Source.

iii. The DataReader Object is a stream-based, forward-only, read-only retrieval of query results
from the Data Source, which do not update the data.

iv. The DataAdapter Object, which populate a Dataset Object with results from a Data Source

OBJECT DESCRIPTION

Connection

• Creates connection to the data source.
• The base class for all the Connection objects is the DbConnection class.
• The Connection object has the methods for opening and closing connection and beginning a

transaction.
Provides three types of connection classes:

• SqlConnection object: to connect to Microsoft SQL Server
• OleDbConnection object: to connect to Microsoft Access
• OdbcConnection object: to connect to Oracle

Command
• Executes a command against the data source and retrieve a DataReader or DataSet.

• It also executes the INSERT, UPDATE or DELETE command against the data source.

• The base class for all the Command objects is the DbCommand class.

8 Explain the procedure of getting connected to a database and running the following queries with relevant
example:

(i) Insert record to a table.
string cs1 = @”Provider=Microsoft.ACE.OLEDB.12.0;Data Source=D:\Downloads\daya\Dot
net\Dot net-2019\c#_examples\dbconnectivity1\test.accdb”;
OleDbConnection con1 = new OleDbConnection(cs1);
con1.Open();
OleDbCommand cmd = new OleDbCommand();
cmd.Connection = con1;
cmd.CommandText="insert into t1 values(‘”+ TextBox1.Text + “’, ‘”TextBox2.Text+”’);
cmd.ExecuteNonQuery();
Response.Write(“value inserted”);

(ii) Delete records from a table.
string cs1 = @”Provider=Microsoft.ACE.OLEDB.12.0;Data Source=D:\Downloads\daya\Dot
net\Dot net-2019\c#_examples\dbconnectivity1\test.accdb”;
OleDbConnection con1 = new OleDbConnection(cs1);
con1.Open();
OleDbCommand cmd = new OleDbCommand();
cmd.Connection = con1;
cmd.CommandText=”delete from t1 where sno=’+Textbox1.Text+’”;
cmd.ExecuteNonQuery();
Response.Write(“value deleted”);

9
What is DataSet? Explain Various Components of DataSet.

DataSet is a very useful in-memory representation
of data and acts as the core of a wide variety of the
data based applications. A DataSet can be
considered as a local copy of the relevant portions of
the database. The data in the DataSet can be
manipulated and updated independent of the database.
You can load the data in the DataSet from any
valid source, such as the MicrosoftSQLServer
database, Oracle Database, or Microsoft Access
database.

DataSet
Components

Description

DataTable

 Consists of DataRow and DataColumn and stores data in the table row
format.

 The DataTable is the central object of the ADO.NET library and similar to
a table in a database.

 The maximum number of rows that a DataTable can contain is fixed at
16,777,216.

DataView

 Represents a customized view of DataTable for sorting, filtering,
searching, editing and navigation.

 allows to create a view on a DataTable to see a subset of data based on a
preset condition specified in the RowStateFilter property.

 used to present a subset of data from the DataTable.

DataColumn

 Consists of a number of columns that comprise a DataTable.

 A DataColumn is the essential building block of the DataTable.

 A DataType property of DataColumn determines the kind of data that a
column holds.

DataRow

 Represents a row in the DataTable.
 use the DataRow object and its properties and methods to retrieve, evaluate,

insert, delete and update the values in the DataTable.

 NewRow() method of the DataTable to create a new DataRow and the

Add() method to add the new DataRow to the DataTable.
 also delete DataRow using Remove() method.

DataRelation

 Allows you to specify relations between various tables.
 used to relate two DataTable objects to each other through DataColumn

objects.
 The relationships are created between matching columns in the parent and child

tables.

10 Write a C# program to Display Records on GridView Control.
string cs1 = @”Provider=Microsoft.ACE.OLEDB.12.0;Data Source=D:\Downloads\daya\Dot net\Dot net-
2019\c#_examples\dbconnectivity1\test.accdb”;
OleDbConnection con1 = new OleDbConnection(cs1);
con1.Open();
OleDbDataAdapter d1=new OleDbDataAdapter(“select * from t2”,con1);
DataSet ds = new DataSet();
d1.Fill(ds, "[t2]");
DataView dv = new DataView(ds.Tables["[t2]"]);
//DataView dv = new DataView(ds.Tables[0]);
dv.Sort = “name2 desc”;
GridView5.DataSource = dv;
GridView5.DataBind();
con1.Close();

	Abstract Classes:
	Abstract methods:
	public abstract int MultiplyTwoNumbers(int Num1,int Num2);

	Interfaces:
	3.1 Implementation of Interfaces and Inheritance:
	1.1 Creating and using Delegates:
	i. Declaring a delegate:

	Access-modifier delegate <return-type>
	Multicasting with Delegates:
	Custom Exception(ApplicationException):
	Building Custom Exceptions, Take One:

