
Page 1 of 13

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2 – Dec. 2019

Sub: Unix and Shell Programming
Sub

Code:
18MCA12

Date: 16/12//2019 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 Explain the below mentioned commands with its usage and examples.

i) Read ii) pr iii) cut iv)tr v)sort
OR

[10]

CO5 L2

2 Explain the grep family commands with its options. [10] CO1 L2

3
PART II

Explain line addressing using “sed” command with examples.
OR

[10]

CO1 L2

4 Explain context addressing using “sed” command with examples.

[10]

CO1 L2

5
PART III

What are regular expressions? Explain the structure of regular

expression.

OR

[10]

CO1

L2

6 Write a short note on appending, inserting and changing text with

respect to text.

[10]
CO1 L2

7
PART IV

Explain awk built-in variables with suitable examples.

[10]

CO1

L2

8
OR

Create a script file called file properties that reads a filename entered

and outputs it properties.

[10]

CO5

L3

9
PART V

Write a shell script that accepts file name as argument and display its

creation time if file exists and if it does not send output error message.

OR

[10] CO5 L3

10 How do you achieve substitution using sed command? Give examples. [10]

CO1 L2

Page 2 of 13

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2– Nov. 2019

Sub: Unix and Shell Programming
Sub

Code:
17MCA12

Branch

:
MCA

Date: 16/12/2019 Duration:
90

min’s
Max Marks: 50 Sem V OBE

1. Explain the below mentioned commands with its usage and examples.

i) Read ii) pr iii) cut iv)tr v)sort

i)Read:
The read statement is the internal tool of the shell for taking input from the user. This will
help the scripts to become interactive.
#!/bin/sh

#Illustration of read statement

echo "Enter your name:"

read fname

echo "Hello $fname"

ii)pr

The pr command prepares a file for printing by adding suitable headers, footers, and

formatted text. When used with a filename as argument, pr doesn’t behave like a

filter:

$ pr group1

May 06 10:38 1999 group1 Page 1

root:x:0:root These seven lines are the original

bin:x:1:root,bin,daemon contents of group1

users:x:200:henry,image,enquiry

adm:x:25:adm,daemon,listen

dialout:x:18:root,henry

lp:x:19:lp

ftp:x:50:

... blank lines ...

pr adds five lines of margin at the top (simplified here) and five at the bottom. The

header

shows the date and time of last modification of the file, along with the filename and

page number. We generally don’t use pr like this. Rather, we use it as a

“preprocessor”

to impart cosmetic touches to text files before they are sent to the printer:

$ pr group1 | lp

Request id is 334

Since pr output often lands up in the hard copy, pr and lp form a common pipeline

sequence.

Page 3 of 13

Sometimes, lp itself uses pr to format the output, in which case this piping is not

required.

iii)Cut

Cutting Columns (-c) To extract specific columns, you need to follow the -c option

with a list of column numbers, delimited by a comma. Ranges can also be specified

using

the hyphen. Here’s how we extract the first four columns of the group file:

$ cut -c1-4 group1 -c or -f option always required

root

bin:

user

adm:

dial

lp:x

ftp:

Note that there should be no whitespace in the column list. Moreover, cut uses a

special

form for selecting a column from the beginning and up to the end of a line:

cut -c -3,6-22,28-34,55- foo Must be an ascending list

The expression 55- indicates column number 55 to the end of the line. Similarly, -3

is

the same as 1-3.

Cutting Fields (-f) The -c option is useful for fixed-length lines. Most UNIX files

(like /etc/passwd and /etc/group) don’t contain fixed-length lines. To extract useful

data from these files you’ll need to cut fields rather than columns.

cut uses the tab as the default field delimiter, but it can also work with a different

delimiter. Two options need to be used here, -d for the field delimiter and -f for the

field list. This is how you cut the first and third fields:

$ cut -d: -f1,3 group1

root:0

bin:1

users:200

adm:25

dialout:18

lp:19

ftp:50

iv) tr

The tr (translate) filter manipulates individual characters in a line. More

specifically, it translates characters using one or two compact expressions:

 tr options expression1 expression2 standard input

Note that tr takes input only from standard input; it doesn’t take a filename as

argument.

By default, it translates each character in expression1 to its mapped counterpart in

expression2. The first character in the first expression is replaced with the first

character

Page 4 of 13

in the second expression, and similarly for the other characters.

Let’s use tr to replace the : with a ~ (tilde) and the / with a -. Simply specify

two expressions containing these characters in the proper sequence:

 $ tr ‘:/’ ‘~-’ < shortlist | head -n 3

 2233~charles harris ~g.m. ~sales ~12-12-52~ 90000

 9876~bill johnson ~director ~production ~03-12-50~ 130000

 5678~robert dylan ~d.g.m. ~marketing ~04-19-43~ 85000

v) sort:
Sorting is arranging data in ascending or descending order. By default, the sort command
reorders the lines in ASCII collating sequence (white space first, then numerals, uppercase,
lowercase). For example,
$sort filename

$ sort emp.lst

0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

1006|chanchal sanghvi|director|sales|09/03/38|6700

1265|s.n. dasgupta|manager|sales|09/12/63|5600

2. Explain the grep family commands with its options.
The grep command scans its input for a pattern and displays lines contain the pattern, the
line numbers or filenames where the pattern occurs. The syntax is –
grep options pattern filename(s)

Various options for grep command are given in Table 3.3. They are discussed with suitable
examples below.
Table 3.3 Options for grep command

 Ignoring Case (-i): When we are searching for a pattern, but not sure about the case, -i

option is used. It ignores the case of the text and displays the result. For example,
$ grep -i 'agarwal' emp.lst

Page 5 of 13

3564|sudhir Agarwal|executive|personnel|07/06/47|8000

 Deleting Lines (-v): The –v (inverse) option selects all lines except those containing the

pattern. The following example selects all lines in the file emp.lst except for those
containing the term director.
$ grep -v 'director' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

5423|n.k. gupta|chairman|admin|08/30/56|5400

6213|karuna ganguly|g.m.|accounts|06/05/62|6300

Displaying Line Numbers (-n): This option displays the line numbers containing the
pattern along with the actual lines. For example,
$ grep -n 'marketing' emp.lst

3:5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

11:6521|lalit chowdury|director|marketing|09/26/45|8200

14:2345|j.b. saxena|g.m.|marketing|03/12/45|8000

15:0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Counting Lines Containing Pattern (-c): A pattern may be present in a file multiple

times. If we would like to know how many times it has appeared, -c option can be used.
The following example shows how many times the pattern director has appeared in the
file emp.lst.
$ grep -c 'director' emp.lst

4

 Displaying Filenames (-l): The –l (el) option is used to display the names of files

containing the pattern. Assume there are there are two more files test.lst and testfile.lst
along with emp.lst. Now, let us check in which file(s) the pattern manager is present.
$grep –l ‘manager’ *.lst

emp.lst

test.lst

 Matching Multiple Patterns (-e): When we would like to search for multiple patterns in

a file, we can use –e option. For example,
$ grep -e "Agarwal" -e "aggarwal" -e "agrawal" emp.lst

2476|anil aggarwal|manager|sales|05/01/59|5000

3564|sudhir Agarwal|executive|personnel|07/06/47|8000

0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Taking Patterns from a File (-f): If various patterns are stored in a file each in different

line, then –f option can be used by giving that filename as one of the arguments. For
example, assume there is a file pattern.lst as –
$cat >pattern.lst

manager

executive

Then, give the command as –
$grep –f pattern.lst emp.lst

1265|s.n. dasgupta|manager|sales|09/12/63|5600

4290|jayant Chodhury|executive|production|09/07/50|6000

2476|anil aggarwal|manager|sales|05/01/59|5000

3564|sudhir Agarwal|executive|personnel|07/06/47|8000

3. Explain line addressing using “sed” command with examples.
The sed command is a multipurpose tool which combines the work of several filters. It
performs non-interactive operations on a data stream. It allows selecting lines and running
instructions on them.
An instruction combines an address for selecting lines, with an action to be taken on them.
The sed command uses such instructions. The syntax is –
sed options ‘address action’ file(s)
Line Addressing: Here, address specifies either one line number to select a single
line or a set of two numbers to select a group of contiguous lines.
 Option Description

Page 6 of 13

In line addressing, the instruction 3q can be broken into the address 3 and the action q
(quit). So, to display only first 3 lines, (similar to head –n 3) use the following statement –
$ sed '3q' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

9876|jai sharma|director|production|03/12/50|7000

5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

In the above example, 3 lines will be displayed and then quits.
Generally, the p (print) command is used to display lines. But, this command behaves
strange – it prints selected lines as well as all lines. Hence, the selected lines will appear
twice. To suppress this feature of p, the –n option has to be used. The following example
selects the lines 5 through 7.
$ sed -n '5,7p' emp.lst

5423|n.k. gupta|chairman|admin|08/30/56|5400

1006|chanchal sanghvi|director|sales|09/03/38|6700

6213|karuna ganguly|g.m.|accounts|06/05/62|6300

The $ symbol can be used to print only the last line as below –
$ sed -n '$p' emp.lst

0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The sed command can be used to select multiple groups of lines. In that case, each
address has to be given in a different line, but enclosed within a single pair of quotes as
shown below –
$ sed -n '1,2p

> 7,9p

> $p' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

9876|jai sharma|director|production|03/12/50|7000

6213|karuna ganguly|g.m.|accounts|06/05/62|6300

The sed command uses ! (exclamatory mark) as a negation operator. Assume, we would

like to select first 2 lines of the file. Note that, selecting first two lines means – not selecting
3rd line to end. So, the command can be used as below –
$ sed -n '3,$!p' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

9876|jai sharma|director|production|03/12/50|7000

Here, ! is for p indicating not to print lines from 3 to end.

Using Multiple Instructions (-e and –f) : In the previous section, we have seen that

when multiple groups of lines have to be selected, the pattern should be given in different
lines with a line-break in-between. To avoid that, sed uses –e option. This option allows to
enter as many instructions as you wish, in a single line, where each instruction is preceded
by the option –e. For example, the following command selects multiple lines (1 to 2, 7 to 9
and last line) –
$ sed -n -e '1,2p' -e '7,9p' -e '$p' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

9876|jai sharma|director|production|03/12/50|7000

When we have too many instructions to use or when we have a set of a common
instructions that are executed often, better to store them in a file. And, then use –f option
with sed command to read from that file and to apply the instructions on input file. Consider

Page 7 of 13

the example given below. Here, we have created a file instr.dat containing required
instructions. Then use the sed command.
$ cat >instr.dat

1,2p

7,9p

$p

$ sed –n –f instr.dat emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

9876|jai sharma|director|production|03/12/50|7000

4. Explain context addressing using “sed” command with examples.
The sed command is a multipurpose tool which combines the work of several filters. It
performs non-interactive operations on a data stream. It allows selecting lines and running
instructions on them.
An instruction combines an address for selecting lines, with an action to be taken on them.
The sed command uses such instructions. The syntax is –
sed options ‘address action’ file(s)
Context Addressing:
Context addressing allows to specify one or two patterns to locate the lines. The patterns
must be bounded by a / on both the sides. When a single pattern is specified, all lines
containing the pattern are selected. The following example is for selecting all the lines
containing the pattern director.
$ sed -n '/director/p' emp.lst

9876|jai sharma|director|production|03/12/50|7000

2365|barun sengupta|director|personnel|05/11/47|7800

1006|chanchal sanghvi|director|sales|09/03/38|6700

6521|lalit chowdury|director|marketing|09/26/45|8200

One can give a comma-separated list of context addresses to select a group of lines. For
example, to select all the lines between dasgupta and saxena use the following statement –
$ sed -n '/dasgupta/,/saksena/p' emp.lst

1265|s.n. dasgupta|manager|sales|09/12/63|5600

4290|jayant Chodhury|executive|production|09/07/50|6000

2476|anil aggarwal|manager|sales|05/01/59|5000

One can mix line addressing and context addressing. If we want to select all lines from 1st

line till dasgupta, use the command as below –
$ sed -n '1,/dasgupta/p' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

9876|jai sharma|director|production|03/12/50|7000

5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

Regular expressions can be used as a part of context address. For example, the following
command selects different spellings of agarwal.
$ sed -n '/[aA]gg*[ar][ar]wal/p' emp.lst

2476|anil aggarwal|manager|sales|05/01/59|5000

3564|sudhir Agarwal|executive|personnel|07/06/47|8000

0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

One more example of sed command including regular expression is given below. It selects
all lines containing saksena, saxena, and gupta. Note that, here also two different patterns
should be given on different lines.
$ sed -n '/sa[kx]s*ena/p

> /gupta/p' emp.lst

2365|barun sengupta|director|personnel|05/11/47|7800

5423|n.k. gupta|chairman|admin|08/30/56|5400

1265|s.n. dasgupta|manager|sales|09/12/63|5600

The characters ^ and $ also can be used as a part of regular expression with sed
command. Following example shows the people born in 1950. Note that, the five dots after
50 in the expressions indicate 5 characters (a delimiter | and 4 characters indicating salary)
present before the end of line ($).
$ sed -n '/50.....$/p' emp.lst

9876|jai sharma|director|production|03/12/50|7000

Page 8 of 13

4290|jayant Chodhury|executive|production|09/07/50|6000

5. What are regular expressions? Explain the structure of regular expression.
A regular expression (regex) is defined as a pattern that defines a class of strings. Given a
string, we can then test if the string belongs to this class of patterns. Regular expressions
are used by many of the UNIX utilities like grep, sed, awk, vi etc. A regular expression is a
set of characters that specify a pattern. Regular expressions are used when we want to
search for specify lines of text containing a particular pattern. Regular expressions search
for patterns on a single line, and not for patterns that start on one line and end on another.

The Character Class
A regular expression lets to specify a group of characters enclosed within a pair of
rectangular brackets []. The match is performed for a single character in the group. For

example, the expression [ra] matches either r or a.

In the previous section, we have seen that grep with –e option is used to compare multiple
patterns. Now, let us write the regular expression for searching different spellings of
agarwal in emp.lst.
$ grep "[aA]g[ar][ar]wal" emp.lst

3564|sudhir Agarwal|executive|personnel|07/06/47|8000

0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The *
The * refers to the immediately preceding character. It matches zero or more occurrences

of the previous character. Hence, the pattern g* matches null string or following strings –
g, gg, ggg, gggg ………

As the * can match even a null string, if you want to search a string beginning with g, do not

give pattern as g* , instead give as gg*.

Now check the following example, where all three types of spellings of agarwal can be
searched.
$ grep "[aA]gg*[ar][ar]wal" emp.lst

2476|anil aggarwal|manager|sales|05/01/59|5000

3564|sudhir Agarwal|executive|personnel|07/06/47|8000

0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The Dot (.)
The dot (.) matches a single character. For example, the pattern 2… matches a

fourcharacter

pattern beginning with a 2. The combination of * and dot (.*) constitutes a very

useful regular expression. It signifies any number of characters or none. For example,
when you are not sure about the initial of saxena, you can give the expression as -
$ grep ".*saxena" emp.lst

2345|j.b. saxena|g.m.|marketing|03/12/45|8000

Page 9 of 13

Specifying Pattern Locations (^ and $)
When we need to search for a pattern either at the beginning or at the end of a line, we can
use ^ and $ respectively. For example, following command searches all the employees
whose employee ID starts with 2.
$ grep "^2" emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

2365|barun sengupta|director|personnel|05/11/47|7800

2476|anil aggarwal|manager|sales|05/01/59|5000

2345|j.b. saxena|g.m.|marketing|03/12/45|8000

6. Write a short note on appending, inserting and changing text with respect to

text.
The sed command provides some text editing commands as a part of its action component.
One can use i (insert), a (append), c (change) and d (delete) for doing appropriate action
on the file. Since sed is a stream editor, the effect of these commands is on every line of
the input file by default. If we want the command to be applied on a specific line, then the
line number (termed as address) should be specified. The input file will be usually opened
for reading. But, the actions like insert, append etc. are writing jobs. It is obvious that a file
cannot be opened for reading as well as writing at a time. Hence, the output of these
actions must be redirected to a temporary file first. The contents of temporary file must be
moved to the input file to modify it using mv command.
For understanding i, a, d and c commands, let us use a file test.lst as below –
$cat test.lst

Manager

Director

Executive

Insertion: Use the command i to insert any number of lines into a file at a required
position. We will consider different examples to understand the working of i command.
Ex1: Using i without any address inserts the given line(s) before every line of the file. For
example,
$sed ‘i Engineer’ test.lst

Engineer

Manager

Engineer

Director

Engineer

Executive

One can observe that Engineer has been included before every line of the file. But, if you
check the contents of the file test.lst, it will be unmodified –
$cat test.lst

Manager

Director

Executive

One can insert more than one string at a required position using single command.
Following example inserts 3 strings into 2nd position of the file.
$sed ‘2i\ #Give \ before pressing enter key

>Software Engineer\ #except for the last line

>Test Engineer\

>CEO’ test.lst > temp #Copy result into temporary file

$ mv temp test.lst #Move temp file to test.lst

$ cat test.lst #Check the contents of test.lst

Manager

Software Engineer

Test Engineer

CEO

Director

Executive

Append: The command a is used to append any number of lines at specified position. We
will consider various situations of using a.

Page 10 of 13

Ex1. By default, the command a appends the given string after every line of the input file.
For example,
$sed ‘a Engineer’ test.lst > temp

$ mv temp test.lst

$ cat test.lst

Manager

Engineer

Director

Engineer

Executive

Engineer

Ex2. To append the string at required position, use the address (line number) as shown
below. Here, the string will be appended after 2nd line of test.lst.
$sed ‘2a Engineer’ test.lst > temp

$ mv temp test.lst

$ cat test.lst

Manager

Director

Engineer

Executive

Ex3. The append command can be used to add line-spacing between the lines of given
file–
$sed ‘a\ #press enter key

> ’ test.lst > temp #close single-quote without any text

$ mv temp test.lst

$ cat test.lst

Manager

Director

Executive

Change: Use the command c to change a particular line by required string. By default, the
command c will change all the lines when address is not given. For example,
Ex1.
$sed ‘c Engineer’ test.lst > temp

$ mv temp test.lst

$ cat test.lst

Engineer

Engineer

Engineer

Here, we can observe that all the lines of the file test.lst got changed to Engineer.
Ex2. Change only the required line by specifying the address as below –
$sed ‘3c Deputy Managaer’ test.lst > temp

$ mv temp test.lst

$ cat test.lst

Manager

Director

Deputy Manager

7. Explain awk built-in variables with suitable examples.
There are several built-in variables in awk as shown in Table 4.1. They all have their own
default values, but it is possible for a user to assign different values to them.
Table 4.1 Built-in Variables of awk
Variable Significance
NR Cumulative number of lines read
FS Input Field Separator
OFS Output Field Separator
NF Number of fields in current line
FILENAME Current input file
ARGC Number of arguments in command line
ARGV List of arguments

Page 11 of 13

Some of the built-in variables are explained here –

 NR: It is used to count number of lines read from the input file. Its usage has been

shown in some of the previous examples.

 FS: As we have discussed earlier, the awk treats a contiguous array of spaces as

the default delimiter between the fields. When some other character is a delimiter in
out input file (for ex, emp.lst has | as the delimiter), we need to specify it using –F.
An alternative way is to use FS variable and setting it within BEGIN section as –
BEGIN { FS= “|”}

Now, while running awk, -F is not necessary.

 OFS: When we use print statement with comma-separated arguments, each

argument will be separated by a space. It is the default field separator in awk. If we
want some other character to be a field separator, OFS is used in BEGIN section
as–
BEGIN { OFS= “~”}

NF: This variable is useful in checking whether all the lines in the input file have
required number of fields or not. For example, assume few lines in emp.lst file do not
contain all the 6 fields (empno, name, designation, department, date of birth and
salary). Then, NF variable is used to check the lines which are not containing all 6
lines. Assume we have an input file errEmp.lst in which few lines do not contain all 6
fields of emp.lst. Then verify it using the below given command –
$ awk 'BEGIN { FS="|"}

> NF !=6 {

> print "Record No ", NR, "has ", NF, " fields"}' errEmp.lst

Record No 6 has 4 fields

Record No 10 has 5 fields

Record No 14 has 3 fields

 FILENAME: It stores the name of the current file being processed. By default, awk

doesn’t print the filename. One can print it using the statement like –
‘$6<4000 {print FILENAME, $0}’

Here, $0 indicates entire line.
8. Create a script file called file properties that reads a filename entered and

outputs it properties.
#!/bin/bash/

echo "enter file name"

read file

if [-f $file]

then

set - `ls -l $file`

echo "File permission : $1"

echo "File link : $2"

echo "File user name : $3"

echo "File group name : $4"

echo "File block size : $5"

echo "Date of modifiation : $6:$7"

echo "Time of modification : $8"

echo "File name : $9"

else

echo "File not found"

fi

9. Write a shell script that accepts file name as argument and display its

creation time if file exists and if it does not send output error message.
#!/bin/bash/

if [$# -eq 0]

then

echo "No arguments"

else

for i in $*

do

Page 12 of 13

if [! -e $i]

then

echo "File does not exist"

else

ls -l $1|tr -s " "|cut -d " " -f6,7,8,9

fi

done

fi

10.How do you achieve substitution using sed command? Give examples.
The command s (substitution) allows to replace a pattern in the input file with something
else. The syntax is –
[address] s / expr1 / expr2 / flags
Here, the expr1 is replaced by expr2 in all the lines specified by address. When address is
not specified, the substitution is performed for all matching lines in the file. Consider an
example –
$ sed 's/|/:/' emp.lst

2233:a.k. shukla|g.m.|sales|12/12/52|6000

9876:jai sharma|director|production|03/12/50|7000

5678:sumit chakrobarty|d.g.m|marketing|04/19/43|6000

………………………………………………………………………………

Here, our expr1 is pipe symbol and expr2 is colon. We are instructing to replace all pipes
by colon in the file emp.lst. But, when we observe the output, only the first (left-most)
occurrence of pipe in every line is replaced by colon. To replace all the pipes in a line, we
need to use the flag g (global). For example,
$ sed 's/|/:/g' emp.lst

2233:a.k. shukla:g.m.:sales:12/12/52:6000

9876:jai sharma:director:production:03/12/50:7000

………………………………………………………………

We can choose the number of lines on which the replacement should happen. In the below
example, the pipe is replaced by colon only for first two lines –
$ sed '1,2s/|/:/g' emp.lst

2233:a.k. shukla:g.m.:sales:12/12/52:6000

9876:jai sharma:director:production:03/12/50:7000

5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

2365|barun sengupta|director|personnel|05/11/47|7800

………………………………………………………………………………………

One can replace a string with another string. In the following example, the string director is
replaced by member only in first 5 lines.
$ sed '1,5s/director/member /' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

9876|jai sharma|member |production|03/12/50|7000

Regular expressions can be used for patterns while doing substitution. For example, all
different spellings like agarwal, aggarwal and agrawal can all be replaced by one simple
string Agarwal as shown below –
$ sed 's/[Aa]gg*[ar][ar]wal/Agarwal/g' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000

…………………………………………………………………………

2476|anil Agarwal|manager|sales|05/01/59|5000

………………………………………………………………………………………

3564|sudhir Agarwal|executive|personnel|07/06/47|8000

………………………………………………………………………………………….

0110|v.k. Agarwal |g.m.|marketing|12/31/40|9000

The anchoring characters ^ and $ can also be used to indicate beginning and ending of the
line in a file. For example, the following statement adds 2 as a prefix to every employee id
in the file –
$ sed 's/^/2/' emp.lst

22233|a.k. shukla|g.m.|sales|12/12/52|6000

29876|jai sharma|director|production|03/12/50|7000

25678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

Page 13 of 13

………………………………………………………………………………………

The salary of every employee can be suffixed with .00 using $ symbol as below –
$ sed 's/$/.00/' emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000.00

9876|jai sharma|director|production|03/12/50|7000.00

5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000.00

2365|barun sengupta|director|personnel|05/11/47|7800.00

………………………………………………………………………………………

Using a single command, multiple strings can be substituted. For example, we would like to
replace director by member, executive by Execom and d.g.m by DGM. Then use the
command as –
$ sed 's/director/member/g #press enter key

> s/executive/Execom/g #press enter key

> s/d.g.m/DGM/g' emp.lst

………………………………………………………………………………………….

9876|jai sharma|member|production|03/12/50|7000

5678|sumit chakrobarty|DGM|marketing|04/19/43|6000

