

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - III

Sub: Programming Using Python Code: 18MCA32

Date: 13.1.2020 Duration: 90 mins Max Marks: 50 Sem: III Branch: MCA

Answer Any One FULL Question from each part.

Ma

rks

OBE

CO RBT

Part - I

1 (a) Explain the MVC design with the help of Tkinter program 10] CO6 L2

OR

2 (a) Demonstrate the creation of ANY 5 widgets using Tkinter. [10] CO6 L2

Part – II

3 (a) Write a tkinter program to design a GUI window that has a label of background

color green and foreground color white

[5] CO6 L2

 (b) Discuss the usage of the following with respect to the print() function: i) sep argument

ii) end argument iii) .format(arguments)
[5] CO1 L2

OR

4 (a) Demonstrate the process of grouping widgets with frame types. [5] CO6 L2

 (b) Write a class for complex numbers and add methods to add and multiply two

complex number.

[5] CO6,

CO5

L3

ART - III

5 (a) List out and explain the phases involved in Object oriented programming. [5] CO6 L2

 (b) Explain the process of writing a method in Class Book. [5] CO6 L2

OR

6 (a) Describe sets in Python . List five methods with a brief description. [10] CO5 L2

Part – IV

7 (a) Write a program to multiply two matrices. [10] CO2 L2

OR

8 (a) Write an Object oriented Python program to create two Time objects: currentTime,

which contains the current time; and breadTime, which contains the amount of time

it take s for a bread maker to make

bread. Then we'll use addTime to figure out when the bread will be done. Write the

printTime function to display the time when the bread will be done by the bread

maker.

[10] CO6

L3

Part – V

9 (a) Demonstrate the creation of GUI using object-oriented methods [6] CO6 L3

 (b) What is the use of mutable variables with the widgets in Tkinter? [4] CO6 L1

OR

10(a) Explain about tuples in python. Write in brief about the methods in dictionary.

[5]

 CO4 L2

(b) Write a Python Program to check a given sentence is a pangram or not. Write a

function to check if a given string is a palindrome.

[5] CO3 L3

1 a) Explain the MVC design with the help of Tkinter program.

Ans:

The MVC(Model View, Controllers) is a GUI design method that helps separate the parts of

an application, which will make the application easier to understand and modify. The main goal

of this design is to keep the representation of the data separate from the parts of the

program that the user interacts with; that way, it is easier to make changes to the GUI code

without affecting the code that manipulates the data.

A GUI program under MVC consists of three parts:
i) View : Component that displays information to the user, e.g. Label, Entry(also accept input).

But they do not do processing or storage.

ii) Models: store data, e.g. piece of text or the cost of an object etc. They also don’t do

computations but keep track of the application’s current state and to save that state to a

file or database and reload it later). E.g. counter variable keeps track of how many times a

button is clicked

iii) Controllers : convert user input into calls on functions which manipulate the data in model.

Controllers may update an application’s models, which in turn can trigger changes to its

views.Example the function registered to be triggered on click of a button.

For example the following piece of code:

import tkinter
The controller.
def click():
counter.set(counter.get() + 1)
if __name__ == '__main__':
window = tkinter.Tk()
The model.
counter = tkinter.IntVar()
counter.set(0)
The views.
frame = tkinter.Frame(window)
frame.pack()
button = tkinter.Button(frame, text='Click', command=click)
button.pack()
label = tkinter.Label(frame, textvariable=counter)
label.pack()
Start the machinery!
window.mainloop()

Here the model is kept track of by variable counter, which refers to an IntVar so that the

view will update itself automatically. The controller is function click, which updates the

model whenever a button is clicked. Four objects make up the view: the root window, a

Frame, a Label that shows the current value of counter, and a button that the user can click

to increment the counter’s value.

2 a) Demonstrate the creation of ANY 5 widgets using Tkinter.

Ans: A tkinter program is a collection of widgets along with their GUI styles and their layout.

Some of the widgets available with tkinter are
i) Button : A clickable button

ii) Checkbutton : A clickable box that can be selected or unselected

iii) Entry: A single-line text field that the user can type in

iv) Frame :A container for widgets

v) Label : A single-line display for text

vi) Menu : A drop-down menu

vii) Text : A multiline text field that the user can type in

Label

Labels are widgets that are used to display short pieces of text. Here we create a Label

that belongs to the root window—its parent widget—and we specify the text to be displayed

by assigning it to the Label’s text parameter.The format for creating a label is

label = tkinter.Label(<<parent>>, text=<<Text to be displayed in label>>)

where <<parent>> is the container in which to put the label.

Frame

As described in Q3

Entry

Entry is a widget which let users enter a single line of text. If we associate a StringVar with

the Entry, then whenever a user types anything into that Entry, the StringVar’s value will

automatically be updated to the contents of the Entry.

The format for creating an Entry is

entry = tkinter.Entry(<<parent>>, textvariable=<<variable name>>)

The below example covers label and Entry:
from Tkinter import *
window = Tk()
frame = Frame(window)
frame.pack()
label = Label(frame, text="Name")
label.pack(side="left")
entry = Entry(frame)
entry.pack(side="left")
window.mainloop()

Output:

Button

Button is a clickable widget with which can act as a trigger when clicked. The format for

creating a button is :

button = tkinter.Button(<<parent>>, text=<<text to be displayed on the button>>,

command=<<Name of function to be called when button is clicked>>)

The third, command=<<function>>, tells it to call function <<function>> each time the user

presses the button. This makes use of the fact that in Python a function is just another kind

of object and can be passed as an argument like anything else.

For example the following code

import Tkinter
import tkMessageBox

top = Tkinter.Tk()

def helloCallBack():
 tkMessageBox.showinfo("Hello Python", "Hello World")

B = Tkinter.Button(top, text ="Hello", command = helloCallBack)

B.pack()
top.mainloop()

Output:

Text

Text is a widget which is used to take multiple lines of text as input. The format of for

creation of Text widget is

text = tkinter.Text(<<parent>>, height=<<h>>, width=<<w>>)

where <<parent>> is the parent frame/window, <<h>> is the number of rows and <<w>> is the

number of columns.

The insert method of Text allows to enter text at the end of the text area. The format is:

text.insert(tkinter.INSERT, <<text to be inserted>>)

Text provides a much richer set of methods than the other widgets. We can embed images in

the text area, put in tags, select particular lines, and so on.

For example
from Tkinter import *

root = Tk()
T = Text(root, height=2, width=30)
T.pack()
T.insert(END, "Just a text Widget\nin two lines\n")
mainloop()

The output would be

Checkbuttons:

Checkbuttons/checkboxes, have two states: on and off. When a user clicks a checkbutton,

the state changes. We can use tkinter mutable variable to keep track of the user’s selection.

An IntVar variable can be used and the values 1 and 0 indicate on and off, respectively.

from Tkinter import *

master = Tk()

var = IntVar()

c = Checkbutton(master, text="Expand", variable=var)
c.pack()

mainloop()

In the above program a checkbutton 'c' is created and put in the master window and an

Intvar 'var' is associated with the current state of the checkbutton.

Menu

This widget is used to display all kinds of menus used by an application. Toplevel menus are

displayed just under the title bar of the root or any other toplevel windows. To create a

toplevel menu, create a new Menu instance, and use add methods to add commands and other

menu entries to it.

from Tkinter import *

def first():
 print "First"

def second():
 print "Second"

window=Tk()
menubar1=Menu(window)
menubar=Menu(window)
menubar.add_command(label='First',command=first)
menubar.add_command(label='Second',command=second)
menubar1.add_cascade(label='File',menu=menubar)
window.config(menu=menubar1)

window.mainloop()

In the above program two menu objects are created - menubar and menubar1. Items are

added to the menu using the add_command method. The first argument specifies the label to

be displayed and the second specifies the function that needs to be invoked on clicking on

the menu option. 'menubar' object is added as a submenu of 'menubar1' using the

add_cascade method invocation. The line ' window.config(menu=menubar1)' specifies that menunar1

is the main menu for the window.

3 a) Write a tkinter program to design a GUI window that has a label of background color green and

foreground color white.

Ans: import Tkinter

window = Tkinter.Tk()

label1=Tkinter.Label(window,text='This is a white label',bg='green',fg='white')

label1.pack()

window.mainloop()

Output:

3 b) Discuss the usage of the following with respect to the print() function: i) sep argument ii) end argument iii)

.format(arguments)

Ans:

Print function is used to output a value /expression on the screen. E.g.

"sep" is used to specify the separators between different elements when a list is printed. The default

value is a space. example

"end" is used to specify the character to be printed at the end of list. The default value is newline.

Example

 format(...)

 | S.format(*args, **kwargs) -> string

 |

 | Return a formatted version of S, using substitutions from args and kwargs.

 | The substitutions are identified by braces ('{' and '}').

Example:

>>> a=20

>>> b=30

>>> str.format("The value of a is {0}, b is {0} and their sum is {2}",a,b,a+b)

'The value of a is 20, b is 20 and their sum is 50'

4 a) Demonstrate the process of grouping widgets with frame types.

Ans: A tkinter Frame is a container. Frames are not directly visible on the screen; instead,

they are used to organize other widgets. The following code creates a frame, puts it in the

root window, and then adds three Labels to the frame:

import tkinter
window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()
first = tkinter.Label(frame, text='First label')
first.pack()
second = tkinter.Label(frame, text='Second label')
second.pack()
third = tkinter.Label(frame, text='Third label')
third.pack()
window.mainloop()

Here is the resulting GUI:

Below is an example with the same three Labels but with two frames. The second frame has

a visual border around it:

import tkinter
window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()
frame2 = tkinter.Frame(window, borderwidth=4, relief=tkinter.GROOVE)
frame2.pack()

first = tkinter.Label(frame, text='First label')
first.pack()
second = tkinter.Label(frame2, text='Second label')
second.pack()
third = tkinter.Label(frame2, text='Third label')
third.pack()
window.mainloop()

Here is the resulting GUI:

4 b) Write a class for complex numbers and add methods to add and multiply two complex number.

Ans: class complex:

 def __init__(self,r,c):

 self.real=r

 self.img=c

 def add(self, c1):

 return complex(self.real+c1.real,self.img+c1.img)

 def mult(self, c1):

 return complex(self.real*c1.real-self.img*c1.img,

 self.real*c1.img+self.img*c1.real)

 def display(self):

 print str.format('{0}+i{1}',self.real,self.img)

c1=complex(2,3)

c2=complex(4,5)

c3=c1.add(c2)

c4=c1.mult(c2)

c3.display()

c4.display()

Output

6+i8

-7+i22

5 a) List out and explain the phases involved in Object oriented programming.

Ans: Object-oriented programming involves at least these phases:

1. Understanding the problem domain. A crucial step in problem solving is to understand the

requirements.

2. Figuring out what type(s) you might want. Reading the problem description to decide the

data types to be used may be done by identifying nouns/noun phrases.

3. Figuring out what features you want your type to have.The next step is to decide the

methods that use the data types used in the previous step.

4. Writing a class that represents this type: This involves describing the type which involves

- writing a class, including a set of methods inside that class.

5. Testing your code. This involves testing the methods separately and also the ways in which

the various methods will interact.

5 b) Explain the process of writing a method in Class Book.

1. Ans: The first step in designing a Book class is to decide the data members/features which

would be required to store details of the book. In our case we would like to store the isbn

(string), authors(list of strings), publisher(string), price(float), title(string).

These features can be listed in the constructor or the __init__ method as shown below:

class Book:

"""Information about a book, including title, list of authors,
publisher, ISBN, and price.
"""
def __init__(self, title, authors, publisher, isbn, price):

""" (Book, str, list of str, str, str, number) -> NoneType
Create a new book entitled title, written by the people in authors,
published by publisher, with ISBN isbn and costing price dollars’’’
self.title = title
Copy the authors list in case the caller modifies that list later.
self.authors = authors[:]
self.publisher = publisher
self.ISBN = isbn
self.price = price

Method __init__ is called whenever a Book object is created. Its purpose is

toinitialize the new object; Here

are the steps that Python follows when creating an object:

1. It creates an object at a particular memory address.

2. It calls method __init__, passing in the new object into the parameter self.

3. It produces that object’s memory address.

2. After this any number of methods as per need can be added to the class. Note: the method

always takes the object itself(self) as the first argument. For instance to know the number of

authors we can add a method num_authors.

def num_authors(self):

 return len(self.authors)

This method returns the number of authors for the book.

6 a) Describe sets in Python . List five methods with a brief description.

Ans: Set is an unordered collection of distinct data. Unordered means that items are not stored in any particular order and there is

no first or second element. Secondly no element can be repeated.

To create a new empty set, simply type set(). To create a set with values already in it, type set((2, 3, 5)). We could instead use a list,

like set([2, 3, 5]), but cannot pass the values one by one, like set(2, 3, 5).

The order of the values and the number of times each value is entered doesn’t matter. The expressions set((3, 5, 2)) and set((2, 3, 5,

5, 2, 3)) create exactly the same result

Set Operations

These include union, intersection, add, and remove. The following table lists the set methods.

Note that most operations createa new set: only add, remove, and clear modify the current set.

7 a) Write a program to multiply two matrices.

Ans: import sys

m1 = input("Enter Number of Rows for Matrix A :")

n1 = input("Enter Number of Columns for Matrix A :")

matA=[[0 for row in range(0,n1)] for col in range(0,m1)]

for i in range(m1):

 for j in range(n1):

 matA[i][j]=input()

m2 = input("Enter Number of Rows for Matrix B :")

n2 = input("Enter Number of Columns for Matrix B :")

matB=[[0 for row in range(0,n2)] for col in range(0,m2)]

for i in range(m2):

 for j in range(n2):

 matB[i][j]=input()

if (n1<>m2):

 print("Cannot perfomr Matrix Multiplication....")

 print("Since First Matrix Row and Second Matrix Column should be same")

 sys.exit()

else:

 matC=[[0 for row in range(0,m1)] for col in range(0,n2)]

 # multiply two matrices

for i in range(m1):

 for j in range(n2):

 matC[i][j] = 0

 for k in range(m2):

 matC[i][j] = matC[i][j] + matA[i][k] * matB[k][j]

print ("Matrix A : ")

for row in matA:

 print(row)

print ("Matrix B : ")

for row in matB:

 print(row)

print "Resultant matrix is: (matrixA * matrixB)"

for row in matC:

 print(row)

8 a) Write an Object oriented Python program to create two Time objects: currentTime, which contains the

current time; and breadTime, which contains the amount of time it take s for a bread maker to make

bread. Then we'll use addTime to figure out when the bread will be done. Write the printTime function to

display the time when the bread will be done by the bread maker.

Ans: import datetime

class MyTime:

 def __init__(self, hrs=0, mins=0, secs=0):

 """ Create a MyTime object initialized to hrs, mins, secs """

 self.hours = hrs

 self.minutes = mins

 self.seconds = secs

 def __str__(self):

 timeString = ""

 if self.hours < 10:

 timeString += "0"

 timeString += str(self.hours) + ":"

 if self.minutes < 10:

 timeString += "0"

 timeString += str(self.minutes) + ":"

 if self.seconds < 10:

 timeString += "0"

 timeString += str(self.seconds)

 return timeString

def add_time(t1, t2):

 h = t1.hours + t2.hours

 m = t1.minutes + t2.minutes

 s = t1.seconds + t2.seconds

 sumTime = MyTime(h, m, s)

 return sumTime

#ct=datetime.datetime.now().strftime('%H, %M, %S')

#ct = datetime.datetime.now().strftime('%H, %M, %S')

#d=datetime.datetime.strptime(ct, "%d %b %Y %H:%M:%S.%f")

#d = datetime.datetime.now().strptime(ct, "%H, %M, %S")

d=datetime.datetime.now()

currentTime=MyTime(d.hour,d.minute,d.second)

#currentTime = MyTime(ct)

#currentTime = MyTime(9, 14, 30)

breadTime = MyTime(1, 10, 0)

doneTime = add_time(currentTime, breadTime)

print("Current Time : ")

print(currentTime)

print("Bread ime : ")

print(breadTime)

print("Make Time : ")

print(doneTime)

9 a) Demonstrate the creation of GUI using object-oriented methods.

Ans:

GUI Programs written in non Object Oriented fashion are not very well structured since most of the code is

not modularized into functions. Also they rely greatly on global variables even if functions are used.This

becomes a challenge when building large applications for understanding and debugging.

Hence all real GUI are built using classes and objects that package models, views and controllers into one

unit. An example of this is shown in the program below for displaying the contents of a counter which

increases with every click of a button

Note here that all the variables required for the application i.e. frame, state, label and button are class

members. Hence they are contained within the class and are not accessible from outside. Specifically

self.state which stores the counter variable is not global but still can be accessible from the function

up_click().

9 b) What is the use of mutable variables with the widgets in Tkinter?

Ans: Mutable variables provide a good way to manage the interactions between a program’s

GUI and its variables. Suppose a string needs to be displayed in several places in a GUI—the

application’s status bar, some dialog boxes, and so on. Assigning a new value to each widget

each time the string changes isn’t the best solution because it may be possible that some of

such updates are left out accidentally. The requirement is for a variable which would update

widgets using it automatically.

Since Python’s strings, integers, doubles, and Booleans are immutable, Tkinter provides types

of its own that can be updated in place and that can notify widgets whenever their values

change. Using the Tkinter provided StringVar instead of str, will in notifying widgets it has

been assigned to that its time to update, whenever a new value is assigned to that StringVar.

The values in Tkinter mutable types are set and retrieved using the set and get methods.

The following code snippet shows an example:

from tkinter import *

window = Tk()

data = StringVar()

data.set("Data to display")

label = Label(window, textvariable=data)

label.pack()

window.mainloop()

Here the StringVar data is associated with the 'label' and whenever it changes the label is

updated automatically as depicted in the figure below:

A StringVar or any other mutable variable cannot be created until the Tk() function is called to create the top-level window. Similar

to StringVar other mutable types provided by tkkinter are IntVar , BooleanVar and FloatVar.

10 a) Explain about tuples in python. Write in brief about the methods in dictionary.

Ans: Tuples are immutable ordered sequence. They are similar to lists because they are ordered and may

have repetitions . However they are immutable whereas list is not.

Tuples are written using parantheses instead of brackets. They can be subscripted, sliced and looped over.

E.g.

() represents an empty tuple. But a tuple with one element cannot be written as (x) but as (x,) since (x) is a

mathematical expression. E.g.

>>> a=(1,)

Here a is a tuple with one element 1.

As said before tuple is immutable. Any attempt to change its members will result in error.E.g.

Tuples can be used to assign multiple values to variables . E.g.

>>> x,y=1,2

Note that the parantheses may be left out while specifying a tuple. Uses of tuple are for swapping numbers

>>> x,y = y,x

and for returning multiple return values from a function.

Storing data using dictionary:

A dictionry is also known a a mapped. A dictionary is an unordered mutable collection of key pairs.

They asociate a key with a value. The keys form a set, any particular can appear once atmost at a dictionary.

Keys must be immutable but the values associated wth the keys are mutable. Dictionaries are created by

putting key value pairs inside braces.

Example:

>>choice_dictionary={1:’a’,2’b’,3:’c’}

Looping over dictionary:

for <<variable>> in <<dictionary>>

 <<block>>

Example:

>>>choice_dictionary={1:’a’,2’b’,3:’c’}

>>>for ch in choice_dictionary:

 print(ch, choice_dictionary[ch])

Output:

1 a

2 b

3 c

Dictionary methods:

Method Purpose Example Result

Clear Empties the

dictionary.

d.clear() Returns None, but d is now

empty.

Get Returns the value

associated

d.get('x', 99) Returns d['x'] if "x" is in d, or 99

if it is not

Items Returns a list of

(key, value) pairs

birthday.items(

)

[('Turing', 1912), ('Newton',

1642), ('Darwin', 1809)]

Values Returns the

dictionary’s values

as a list Entries may

or may not

birthday.values

()

[1912, 1642, 1809]

Keys Returns the

dictionary’s keys as

a list. Entries are

guaranteed to be

unique

birthday.keys() ['Turing','Newton', 'Darwin']

Update Updates the

dictionary with the

contents of another

>>>d2={“hi”:”

hello”}

d.update(d2)

10 b) Write a Python Program to check a given sentence is a pangram or not. Write a function to check if a

given string is a palindrome.

Ans: Program to check if string is a Pangram

s='The quick brown fox jumps over the lazy dog'

l=[x for x in set(s.lower()) if x.isalpha()] # get unique alphabets in the string

if len(l) == 26: # check if all letters of the alphabet occur

 print "The given string is a pangram"

else:

 print "The given string is not a pangram"

Palindrome:

s='malayalam'

if s==s[::-1]:

 print ('Palindrome')

else:

 print (' not Palindrome')

