
Sub: Programming Using C# and .Net
Date: 16/11/2019 Duration: 90 min’s Max Marks: 50 Sem 5th

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

1 Illustrate the working of checkBox, TextBox and GrouupBox controls with windows form application
example.

 TextBox Control
 The TextBox control is one of the most used controls form from the basic tools. A TextBox control

accepts user input on a Form. Windows Forms text boxes are used to get input from the user or to
display text. The TextBox control is generally used for editable text, although it can be made read-
only. TextBoxes can display multiple lines also add basic formatting.

 private void textBox1_KeyDown(object sender, KeyEventArgs e)
 {
 if (e.KeyCode == Keys.Enter)
 {
 MessageBox.Show("You pressed enter! Good job!");
 }
 else if (e.KeyCode == Keys.Escape)
 {
 MessageBox.Show("You pressed escape! What's wrong?");
 }
 }
 private void Form1_Load(object sender, EventArgs e)
 {
 textBox2.Text = "Apple";
 }
 private void textBox2_TextChanged(object sender, EventArgs e)
 {
 if (textBox2.Text.Length == 1)
 {
 if (textBox2.Text == "B" || textBox2.Text == "b")
 {
 textBox2.Text = "Ball";
 }
 }
 }

 CheckBox Control
 A CheckBox control indicates whether a particular condition is on or off. You can also use check box

controls in groups to display multiple choices from which the user can select one or more.
 The Check Box control is similar to the radio button control in that each is used to indicate a selection

that is made by user. They differ in that only one radio button in a group can be selected at a time but
you can make multiple selections using CheckBox.

private void checkBox1_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBox1.Checked == true)

 MessageBox.Show("Sports Checked", "checkbox");
 else if (checkBox1.Checked == false)
 MessageBox.Show("Sports Unchecked", "checkbox");
 }

 private void checkBox2_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBox2.Checked == true)
 MessageBox.Show("Dance Checked", "checkbox");
 else if (checkBox2.Checked == false)
 MessageBox.Show("Dance Unchecked", "checkbox");
 }
 }

 GroupBox
 A GroupBox control is a container control that is used to place Windows Forms child controls in a

group. The purpose of a GroupBox is to define user interfaces where we can categories related controls in
a group. They allow you to place controls on it and all the control inherit the properties from the container
in which they sit. This is useful when you to form a group of controls that performs some action or collect
logically similar information from the user.

private void InitializeMyGroupBox()
{
 GroupBox groupBox1 = new GroupBox();
 Button button1 = new Button();
 button1.Location = new Point(20,10);
 groupBox1.FlatStyle = FlatStyle.Flat;
 groupBox1.Controls.Add(button1);
 Controls.Add(groupBox1);

 GroupBox groupBox2 = new GroupBox();
 Button button2 = new Button();
 button2.Location = new Point(20, 10);
 groupBox2.Location = new Point(0, 120);
 groupBox2.FlatStyle = FlatStyle.Standard;

 // Add the Button to the GroupBox.
 groupBox2.Controls.Add(button2);

 // Add the GroupBox to the Form.
 Controls.Add(groupBox2);
}

2 Write short notes on MDI window forms.

Windows Forms
Windows Forms are used to create the GUIs for programs. A Form is a graphical element that
appears on your computer’s desktop; it can be a dialog, a window or an MDI window (multiple

document interface window).

 A component is an in-stance of a class that implements the IComponent interface, which defines the
behaviors that components must implement, such as how the component is loaded.

 A control, such as a Button or Label, has a graphical representation at runtime. Some components lack
graphical representations . Such components are not visible at run time.

3 What is GUI? List and Explain basic controls of GUI.

1. GUI and Basic Controls:

A graphical user interface (GUI) allows a user to interact visually with a program gives a program a
distinctive “look” and “feel”.

GUIs are built from GUI controls which are sometimes called components or widgets (window gadgets).
GUI controls are objects that can display information on the screen or enable users to interact with an
application via the mouse, keyboard or some other form of input.

Several common GUI controls are listed in below table:

Table 1.1: Some basic GUI Controls

Control Description
Label Displays images or uneditable text.

TextBox
Enables the user to enter data via the keyboard.
It can also be used to display editable or uneditable text.

Button Triggers an event when clicked with the mouse.

CheckBox Specifies an option that can be selected (checked) or unselected (not checked).

ComboBox Provides a drop-down list of items from which the user can make a selection
either by clicking an item in the list or by typing in a box.

ListBox
Provides a list of items from which the user can make a selection by clicking one
or more items.

Panel A container in which controls can be placed and organized.

NumericUpDown Enables the user to select from a range of numeric input values.

4 Explain Architecture of WPF controls.
Before WPF, the other user interface frameworks offered by Microsoft such as MFC and Windows forms,
were just wrappers around User32 and GDI32 DLLs, but WPF makes only minimal use of User32. So,

 WPF is more than just a wrapper.
 It is a part of the .NET framework.
 It contains a mixture of managed and unmanaged code.

The major components of WPF architecture are as shown in the figure below. The most important code part
of WPF are −

 Presentation Framework
 Presentation Core
 Milcore

The presentation framework and the presentation core have been written in managed code. Milcore is a part
of unmanaged code which allows tight integration with DirectX (responsible for display and

rendering). CLR makes the development process more productive by offering many features such as
memory management, error handling, etc.

The architecture of WPF is actually a multilayered architecture. It has mainly three layers, the WPF Managed Layer,
the WPF Unmanaged Layer and the Core operating system element, basically these layers are a set of assemblies that
rovide the entire framework.

The major components of WPF are illustrated in the following WPF diagram:

Now I will explain each layer one by one.

Managed Layer

The Presentation Framework, Presentation Core and Window Base are the three major components of the
Managed Layer. These are the major code portions of WPF and plays a vital role in an overview of Windows
Presentation Foundation. The public API exposed is only via this layer. The Major portion of the WPF is in
managed code.

 PresentationFramework.dll: This section contains high-level features like application windows,
panels, styles controls, layouts, content and so on that helps us to build our application. It also

implements the end-user presentation features including data binding, time-dependencies, animations
and many more.

 PresentationCore.dll: This is a low-level API exposed by WPF providing features for 2D, 3D,
geometry and so on. The Presentation Core provides a managed wrapper for MIL and implements the
core services for WPF such as UI Element and visual . The Visual System creates visual tree that
contains applications Visual Elements and rendering instructions.

 WindowsBase.dll: It holds the more basic elements that are capable to be reused outside the WPF
environment like Dispatcher objects and Dependency objects.

UnManaged Layer

 milCore.dll: The composition engine that renders the WPF application is a native component. It is
called the Media Integration Layer (MIL) and resides in milCore.dll. The purpose of the milCore is
to interface directly with DirectX and provide basic support for 2D and 3D surface. This section is
unmanaged code because it acts as a bridge between WPF managed and the DirectX / User32 unmanaged API.

 WindowsCodecs.dll: WindowsCodecs is another low-level API for imaging support in WPF
applications like image processing, image displaying and scaling and so on. It consists of a number
of codecs that encode/decode images into vector graphics that would be rendered into a WPF screen.

Core operating System Layer (Kernel)

This layer has OS core components like User32, GDI, Device Drivers, Graphic cards and so on. These
components are used by the application to access low-level APIs.

 DirectX: DirectX is the low-level API through which WPF renders all graphics. DirectX talks with
drivers and renders the content.

 User32: User32 actually manages memory and process separation. It is the primary core API that
every application uses. User32 decides which element will be placed where on the screen.

 GDI: GDI stands for Graphic Device Interface. GDI provides an expanded set of graphics primitives
and a number of improvements in rendering quality.

 CLR: WPF leverages the full .NET Framework and executes on the Common Language Runtime
(CLR).

 Device Drivers: Device Drivers are specific to the operating system. Device Drivers are used by the
applications to access low-level APIs.

5 Discuss in detail about multi-tier application architecture.

Web-based applications are multitier applications and also referred as n-tier applications.

 Multitier applications divide functionality into separate tiers (that is, logical groupings of
functionality).

 Tiers can be located on the same computer, the tiers of web-based applications commonly reside
on separate computers for security and scalability.

There are 3 tiers. They are:

i. Information Tier:
 The information tier also called the bottom tier.

 It maintains the application’s data.

 This tier typically stores data in a

relational database management
system.

Example: A retail store might have a
database for storing product information,
such as descriptions, prices and quantities in
stock.
The same database also might contain
customer information, such as user names,
billing addresses and credit card numbers.

 This tier can contain multiple databases,
which together comprise the data needed
for an application.

ii.Business Logic:

 The middle tier acts as an intermediary between data in the information tier and the application’s
clients.

 The middle-tier controller logic processes client requests (such as requests to view a product
catalog) and retrieves data from the database.

 The middle-tier presentation logic then processes data from the information tier and presents the
content to the client.

 Web applications typically present data to clients as web pages.

 Business logic in the middle tier enforces business rules and ensures that data is reliable before the
server application updates the database or presents the data to users.

 Business rules dictate how clients can and cannot access application data, and how applications

process data.

Example: A business rule in the middle tier of a retail store’s web-based application might ensure that
all product quantities remain positive.

A client request to set a negative quantity in the bottom tier’s product information database would be
rejected by the middle tier’s business logic.

ii. Client Tier:

 The client tier, or top tier, is the application’s user interface, which gathers input and displays
output.

 Users interact directly with the application through the user interface (typically viewed in a
web browser), keyboard and mouse.

 In response to user actions (Example: clicking a hyperlink), the client tier interacts with the
middle tier to make requests and to retrieve data from the information tier.

 The client tier then displays to the user the data retrieved from the middle tier.

 The client tier never directly interacts with the information tier.

6 Explain the session management in ASP.NET using controls.

Cookies: Cookies provide you with a tool for personalizing web pages. A cookie is a piece of data stored
by web browsers in a small text file on the user’s computer. A cookie maintains information about the
client during and between browser sessions.

Session tracking using the .NET class HttpSessionState:
If the user clicks the link for book recommendations, the information stored in the user’s unique
HttpSessionState object is read and used to form the list of recommendations. That can be done using
Session property.

Session Property:

Every Web Form includes a user-specific HttpSessionState object, which is accessible through property
Session
of class Page. We use this property to manipulate the current user’s HttpSessionState object.

When a page is first requested, a unique HttpSessionState object is created by ASP.NET and assigned to the
Page’s Session property.

The session object is created from the HttpSessionState class, which defines a collection of session state

items. The HttpSessionState class has the following properties:

The HttpSessionState class has the following methods:

Methods Description
Add(name, value) Adds an item to the session state collection.
Clear Removes all the items from session state collection.
Remove(name) Removes the specified item from the session state collection.
RemoveAll Removes all keys and values from the session-state collection.
RemoveAt Deletes an item at a specified index from the session-state collection.

7 Explain the controls from AJAX control toolkit.

1. AJAX Control ToolKit:

The control toolbox in the Visual Studio IDE contains a group of controls

called the “AJAX Extensions”.

The ScriptManager Control:

The ScriptManager control is the most important control and
must be present on the page for other controls to work.

Syntax:

If you create an 'Ajax Enabled site' or add an 'AJAX Web Form' from the 'Add Item' dialog box, the web
form automatically contains the script manager control.

The ScriptManager control takes care of the client-side script for all the server side controls.

The UpdatePanel Control:

The UpdatePanel control is a container control and derives from the Control class. It acts as a container
for the child controls within it and does not have its own interface.

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

Properties Description
SessionID The unique session identifier.

Item(name)
The value of the session state item with the specified name. This is the default
property of the HttpSessionState class.

Count The number of items in the session state collection.

TimeOut
Gets and sets the amount of time, in minutes, allowed between requests before
the session-state provider terminates the session.

When a control inside it triggers a post back, the UpdatePanel interferes to initiate the post asynchronously
and update just that portion of the page.

Example:

Properties of the UpdatePanel Control

The following table shows the properties of the update panel control:

Properties Description

ChildrenAsTriggers
This property indicates whether the post backs are coming from the child
controls, which cause the update panel to refresh.

ContentTemplate
It is the content template and defines what appears in the update panel
when it is rendered.

RenderMode Shows the render modes. The available modes are Block and Inline.
UpdateMode Gets or sets the rendering mode by determining some conditions.

Triggers
Defines the collection trigger objects each corresponding to an event
causing the panel to refresh automatically.

Methods of the UpdatePanel Control
The following table shows the methods of the update panel control:

Methods Description

CreateContentTemplateContainer
Creates a Control object that acts as a container for child
controls that define the UpdatePanel control's content.

CreateControlCollection
Returns the collection of all controls that are contained in the
UpdatePanel control.

Initialize
Initializes the UpdatePanel control trigger collection if partial-
page rendering is enabled.

Update Causes an update of the content of an UpdatePanel control.

The behavior of the update panel depends upon the values of the UpdateMode property and
ChildrenAsTriggers property.

UpdateMode ChildrenAsTriggers Effect

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>

<asp:Button ID="btnpartial" runat="server"
onclick="btnpartial_Click" Text="Partial PostBack"/>

<asp:Label ID="lblpartial" runat="server"></asp:Label>

</ContentTemplate>
</asp:UpdatePanel>

Always False Illegal parameters.

Always True
UpdatePanel refreshes if whole page refreshes or a
child control on it posts back.

Conditional False
UpdatePanel refreshes if whole page refreshes or a
triggering control outside it initiates a refresh.

Conditional True
UpdatePanel refreshes if whole page refreshes or a
child control on it posts back or a triggering control
outside it initiates a refresh.

The UpdateProgress Control:

The UpdateProgress control provides a sort of feedback on the browser while one or more update panel
controls are being updated.

Example: While a user logs in or waits for server response while performing some database oriented
job. It provides a visual acknowledgement like "Loading page...", indicating the work is in progress.

Syntax:

The above snippet shows a simple message within the ProgressTemplate tag.

However, it could be an image or other relevant controls. The UpdateProgress control displays for every
asynchronous postback unless it is assigned to a single update panel using the AssociatedUpdatePanelID
property.

Properties of the UpdateProgress Control
The following table shows the properties of the update progress control:

Properties Description

AssociatedUpdatePanelID
Gets and sets the ID of the update panel with which this control is
associated.

Attributes
Gets or sets the cascading style sheet (CSS) attributes of the
UpdateProgress control.

DisplayAfter
Gets and sets the time in milliseconds after which the progress template is
displayed. The default is 500.

DynamicLayout Indicates whether the progress template is dynamically rendered.

ProgressTemplate
Indicates the template displayed during an asynchronous post back which
takes more time than the DisplayAfter time.

<asp:UpdateProgress ID="UpdateProgress1" runat="server"
DynamicLayout="true" AssociatedUpdatePanelID="UpdatePanel1" >

<ProgressTemplate>
Loading...

</ProgressTemplate>

</asp:UpdateProgress>

Methods of the UpdateProgress Control
The following table shows the methods of the update progress control:

Methods Description

GetScriptDescriptors
Returns a list of components, behaviors, and client controls that are
required for the UpdateProgress control's client functionality.

GetScriptReferences
Returns a list of client script library dependencies for the
UpdateProgress control.

The Timer Control

The timer control is used to initiate the post back automatically. This could be done in two ways:

i. Setting the Triggers property of the UpdatePanel control:

ii. Placing a timercontrol directly inside the UpdatePanel to act as a child control trigger. A single
timer can be the trigger for multiple UpdatePanels.

8 Describe the different validation controls With Example in ASP.NET.

Validation control or Validator, which determines whether the data in another web control is in the proper
format.

 Validators provide a mechanism for validating user input on the client.
 When the page is sent to the client, the validator is converted into JavaScript that performs the

validation in the client web browser.
 JavaScript is a scripting language that executed on the client. Unfortunately, some client browsers

might not support scripting or the user might disable it.

For this reason, you should always perform validation on the server. ASP.NET validation controls can
function on the client, on the server or both.

An important aspect of creating ASP.NET Web pages for user input is to be able to check that the
information users enter is valid. ASP.NET provides a set of validation controls that provide an easy-to-use
but powerful way to check for errors and, if necessary, display messages to the user.

There are six types of validation controls in ASP.NET that listed below:

The below table describes the controls and their work:

Validation Control Description
RequiredFieldValidation Makes an input control a required field

CompareValidator
Compares the value of one input control to the value of another input
control or to a fixed value

RangeValidator Checks that the user enters a value that falls between two values

RegularExpressionValidator Ensures that the value of an input control matches a specified pattern

CustomValidator
Allows you to write a method to handle the validation of the value
entered

ValidationSummary Displays a report of all validation errors occurred in a Web page

All these validation control classes are inherited from the BaseValidator class hence they inherit its
properties and methods that are ControlToValidate, Display, EnableClientScript, Enabled, Text, isValid,
and validate() method.

RequiredFieldValidator Control:

The RequiredFieldValidator control ensures that the required field is not empty. It is generally tied to a text
box to force input into the text box.

Syntax:

RangeValidator Control:

The RangeValidator control verifies that the input value falls within a predetermined
range. It has three specific properties:

Properties Description

Type
It defines the type of the data. The available values are: Currency, Date,
Double, Integer, and String.

MinimumValue It specifies the minimum value of the range.

MaximumValue It specifies the maximum value of the range.

Syntax:

CompareValidator Control:

The CompareValidator control compares a value in one control with a fixed value or a value in another

control. It has the following specific properties:

<asp:RangeValidator ID="rvclass" runat="server"
ControlToValidate="txtclass"
ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"
MinimumValue="6" Type="Integer">

</asp:RangeValidator>

<asp:RequiredFieldValidator ID="rfvcandidate"
runat="server" ControlToValidate ="ddlcandidate"
ErrorMessage="Please choose a candidate"
InitialValue="Please choose a candidate">

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator ID="string" runat="server"
ErrorMessage="string" ValidationExpression="string"
ValidationGroup="string">

</asp:RegularExpressionValidator>

Syntax:

<asp:CompareValidator ID="CompareValidator1" runat="server"
ErrorMessage="CompareValidator">

</asp:CompareValidator>

RegularExpressionValidator:

The RegularExpressionValidator allows validating the input text by matching against a pattern of a regular
expression. The regular expression is set in the ValidationExpression property.

The following table summarizes the commonly used syntax constructs for

Regular expressions: \b, \n, \,\f, \r, \v, \t

Metacharacters: ., [abcd], [^abcd], [a-zA-Z], \w, \W, \s, \S, \d, \D

Quantifiers: *, +, ?, {n}, {n, },

{n,m}

CustomValidator:

The CustomValidator control allows writing application specific custom validation routines for both the
client side and the server side validation.

 The client side validation is accomplished through the ClientValidationFunction property. The
client side validation routine should be written in a scripting language, such as JavaScript or
VBScript, which the browser can understand.

 The server side validation routine must be called from the control's ServerValidate eventhandler.
The server side validation routine should be written in any .Net language, like C# or VB.Net.

Syntax:

<asp:CompareValidator ID="CompareValidator1" runat="server"
ErrorMessage="CompareValidator">

</asp:CompareValidator>

Properties Description
Type It specifies the data type.
ControlToCompare It specifies the value of the input control to compare with.
ValueToCompare It specifies the constant value to compare with.

Operator

It specifies the comparison operator, the available values are: Equal,
NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual,
and DataTypeCheck.

<asp:ValidationSummary ID="ValidationSummary1" runat="server"
DisplayMode = "BulletList" ShowSummary = "true"
HeaderText="Errors:" />

ValidationSummary:

The ValidationSummary control does not perform any validation but shows a summary of all errors in the

page. The summary displays the values of the ErrorMessage property of all validation controls that failed

validation. The following two mutually inclusive properties list out the error message:

 ShowSummary : shows the error messages in specified format.
ShowMessageBox : shows the error messages in a separate window.

9Wriwrite a program for addition AND Subtraction of two numbers from text boxes and display the result on
label in the form using button click event.

 TextBox TextBox1= new TextBox();
TextBox TextBox2= new TextBox();
Label Label1= new Label();
Label Label2= new Label();
Label Label3= new Label();

Button Button1= new Button();
this.controls.add(TextBox1);
this.controls.add(TextBox2);
this.controls.add(Label1);
this.controls.add(Label2);
this.controls.add(Label3);

Int a=Convert.ToInt32(TextBox1.Text);
Int b=Convert.ToInt32(TextBox2.Text);

Int sum=a+b;
Int sub=a-b;
Int mul=a*b;
Label1.Text=Convert.ToString(sum);
Label2.Text=Convert.ToString(sub);

Label3.Text=Convert.ToString(mul);

<asp:CustomValidator ID="CustomValidator1" runat="server"
ClientValidationFunction=.cvf_func.
ErrorMessage="CustomValidator">

</asp:CustomValidator>

class MyException : ApplicationException
{ public MyException(){ . . . }
public MyException(String Msg): base(Msg){. . .
}

}

10 Explain how custom Exceptions will be ceated in C# program with suitable example.

The ApplicationException is thrown by a user program, not by the common language
runtime. If you are designing an application that needs to create its own exceptions.

To create your own exception class, here are some important recommendations:
 Give a meaningful name to your Exception class and end it with Exception.
 Throw the most specific exception possible.
 Give meaningful messages.
 Do use InnerExceptions.
 When wrong arguments are passed, throw an ArgumentException or a subclass of it, if necessary.

Building Custom Exceptions, Take Two:

Set the parent’s Message property via an incoming constructor parameter. Here, you are simply passing
the parameter to the base class constructor.

With this design, a custom exception class is a uniquely named class deriving
from

System.ApplicationException.

using System;
namespace Chapter5_Examples {

class MyException : ApplicationException { public
MyException(String Msg): base(Msg){

Console.WriteLine("Pass the message up to the base class");
}

}
class CusException1{

static void Main(string[] args){ try{
throw new MyException("This is My Exception");

}
catch(MyException ex){ Console.WriteLine(ex.Message); }
Console.ReadLine();

}
}

}

Building Custom Exceptions, Take Three:
To build a correct and proper custom exception class, which requires to follow the below points:

 Derives from Exception /ApplicationException

 Is marked with the [System.Serializable] attribute
 Defines a default constructor
 Defines a constructor that sets the inherited Message property
 Defines a constructor to handle “InnerExceptions” and the serialization of your type

However, to finalize our examination of building custom exceptions, here is the final iteration of
CustomException:

1. Throw exception without message: throw new CustomException()
2. Throw exception with simple message: throw new CustomException(message)

3. Throw exception with message format and parameters
throw new CustomException("Exception with parameter

value '{0}'", param)

4. Throw exception with simple message and inner exception
throw new CustomException(message, innerException)

5. Throw exception with message format and inner exception. Note that, the variable length params are
always floating.

throw new CustomException("Exception with parameter
value '{0}'", innerException, param)

6. The last flavor of custom exception constructor is used during exception serialization/deserialization.

[Serializable]
public class CustomException : Exception{

public CustomException() : base() { }
public CustomException(string message): base(message) { }

public CustomException(string format, params object[] args)
: base(string.Format(format, args)) { }

public CustomException(string message, Exception
innerException): base(message, innerException) { }

public CustomException(string format, Exception

innerException, params object[] args)
: base(string.Format(format, args), innerException) { }

protected CustomException(SerializationInfo info,
StreamingContext context) : base(info, context) { }

}

	Table 1.1: Some basic GUI Controls
	i. Information Tier:
	ii. Client Tier:
	Session Property:
	1. AJAX Control ToolKit:
	The ScriptManager Control:
	The UpdatePanel Control:
	Properties of the UpdatePanel Control
	Methods of the UpdatePanel Control

	The UpdateProgress Control:
	Properties of the UpdateProgress Control
	Methods of the UpdateProgress Control

	The Timer Control
	RequiredFieldValidator Control:
	RangeValidator Control:
	CompareValidator Control:
	RegularExpressionValidator:
	CustomValidator:
	ValidationSummary:
	Building Custom Exceptions, Take Two:
	Building Custom Exceptions, Take Three:
	CustomException:

