
1 | P a g e

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test III - January 2020

Sub: Object Oriented Programming Using C++ Code: 18MCA11

Date: 13.01.2020 Duration: 90 mins Max Marks: 50 Sem: I Branch: MCA

 Marks
OBE

CO RBT

1.

 Part - I
Explain STL container classes.

[10]

CO4

L2

OR

2. What is Exception? Explain the use of try, catch and throw with example. Write a
program for the exception division by zero.

[10] CO3 L2

3. (a)

 Part - II
Explain manipulators. Write a Program to create your own manipulators.

[6] CO4 L3

 (b) Explain setw and setfill manipulators with example. [4] CO4 L2

OR

4. Explain how can we catch all exception, restrict exception and rethrow exception with
example

[10] CO3 L2

5.

Part –III
What is stream? Discuss the four streams which are automatically opened when a C++
Program begins execution.

[10]

CO3

L2

6. What is iterator? Write a simple C++ program to store and display integer elements

using STL Vector class.

[10] CO4 L2

 Part – IV

7. What is STL? List and explain the three types of containers in STL. [10] CO4 L2

 OR

8. (a) Write a C++ program to create a template function for Bubble Sort and demonstrate

sorting of integers and doubles

[6] CO3 L3

 (b) How are the Object Oriented Programming different from procedure Oriented
Programming?

[4] CO1 L2

` Part - V

9. Create an abstract base class EMPLOYEE with data members: Name, EmpID and

BasicSal and a pure virtual function Cal_Sal().Create two derived classes
MANAGER (with data members: DA and HRA and SALESMAN (with data

members: DA, HRA and TA). Write appropriate constructors and member
functions to initialize the data, read and write the data and to calculate the net
salary. The main() function should create array of base class pointers/references to

invoke overridden functions and hence to implement run

[10] CO3 L3

 OR
10. Write a program to implement FILE I/O operations on characters. I/O operations

includes inputting a string, Calculating length of the string, Storing the string in a

file, fetching the stored characters from it, etc.

[10] CO3 L3

2 | P a g e

Internal Assesment Test III – January 2020 – 13/01/2020

Answer Key

Sub: Object Oriented Programming Using C++ Code: 18MCA11

1.

 Part - I
Explain STL container classes.
Containers

Containers are objects that hold other objects, and there are several different types.
For example, the vector class defines a dynamic array, deque creates a double-ended

queue, and list provides a linear list. These containers are called sequence containers
It also defines associative containers, which allow efficient retrieval of values based

on keys. For example, a map provides access to values with unique keys.
Each container class defines a set of functions that may be applied to the container.

For example, a list container includes functions that insert, delete, and merge elements.

Ex:

#include <vector>
#include <iostream>
int main()
{
using namespace std;
 vector<int> vect;
 for (int nCount=0; nCount < 6; nCount++)
 vect.push_back(10 - nCount); // insert at end of array
 for (int nIndex=0; nIndex < vect.size(); nIndex++)
 cout << vect[nIndex] << " ";
 cout << endl;
}

[10]

2. What is Exception? Explain the use of try, catch and throw with example. Write a program for the

exception division by zero.

Exception means run time errors. Exception handling allows you to manage run-time errors in an orderly
fashion. Using exception handling, your program can automatically invoke an error-handling routine when
an error occurs.
C++ exception handling is built upon three keywords: try, catch, and throw. In the
most general terms, program statements that you want to monitor for exceptions
are contained in a try block. If an exception (i.e., an error) occurs within the try block,
it is thrown (using throw). The exception is caught, using catch, and processed. The

[10]

3 | P a g e

following discussion elaborates upon this general description.
Code that you want to monitor for exceptions must have been executed from
within a try block. (Functions called from within a try block may also throw an
exception.) Exceptions that can be thrown by the monitored code are caught by a
catch statement, which immediately follows the try statement in which the exception
was thrown. The general form of try and catch are shown here.
try {
// try block
}
catch (type1 arg) {
// catch block
}
catch (type2 arg) {
// catch block
}
catch (type3 arg) {
// catch block
}...
catch (typeN arg) {
// catch block
}
The try can be as short as a few statements within one function or as allencompassing
as enclosing the main() function code within a try block (which
effectively causes the entire program to be monitored).
When an exception is thrown, it is caught by its corresponding catch statement,
which processes the exception. There can be more than one catch statement associated
with a try. Which catch statement is used is determined by the type of the exception.
That is, if the data type specified by a catch matches that of the exception, then that
catch statement is executed (and all others are bypassed). When an exception is caught,
arg will receive its value. Any type of data may be caught, including classes that you
create. If no exception is thrown (that is, no error occurs within the try block), then no
catch statement is executed.
The general form of the throw statement is shown here:
throw exception;
Example
#include <iostream>
using namespace std;
void divide(double a, double b);
int main()
{
double i, j;
do {
cout << "Enter numerator (0 to stop): ";
cin >> i;
cout << "Enter denominator: ";
cin >> j;
divide(i, j);
} while(i != 0);
return 0;
}
void divide(double a, double b)
{
try {
if(!b) throw b; // check for divide-by-zero
cout << "Result: " << a/b << endl;
}
catch (double b) {
cout << "Can't divide by zero.\n";
}
}

4 | P a g e

3. (a)

 Part - II
Explain manipulators. Write a Program to create your own manipulators.

Manipulator functions are special stream functions that change certain characteristics of the input and

output. They change the format flags and values for a stream. The main advantage of using

manipulator functions is that they facilitate that formatting of input and output streams.

The following are the list of standard manipulator used in a C++ program. To carry out the operations

of these manipulator functions in a user program, the header file input and output

manipulator <iomanip.h> must be included.

[6]

5 | P a g e

Ex:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
cout << hex << 100 << endl;
cout << setfill('?') << setw(10) << 2343.0;
return 0;
}
This displays
64

??????2343

Creating our own inserter:
All parameterless manipulator output functions have this skeleton:
ostream &manip-name(ostream &stream)
{
// your code here
return stream;
}

#include <iostream>
#include <iomanip>
using namespace std;
// A simple output manipulator.
ostream &sethex(ostream &stream)
{
stream.setf(ios::showbase);
stream.setf(ios::hex, ios::basefield);
return stream;
}
int main()
{
cout << 256 << " " << sethex << 256;
return 0;
}
O/P : 256 0x100

 (b) Explain setw and setfill manipulators with example.
setfill(int ch) Set the fill character to ch .It is used to format an Output.
setw(int w) Set the field width to w. It is used to format an Output.

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
cout << hex << 100 << endl;
cout << setfill('?') << setw(10) << 2343.0;
return 0;
}
This displays
64
??????2343

[4]

4. Explain how can we catch all exception, restrict exception and rethrow exception with example
Catching All Exceptions

In some circumstances you will want an exception handler to catch all exceptions instead of just a certain
type. This is easy to accomplish. Simply use this form of catch.

[10]

6 | P a g e

catch(...) {
// process all exceptions
}
Here, the ellipsis matches any type of data. The following program illustrates catch(...).
// This example catches all exceptions.
#include <iostream>
using namespace std;
void Xhandler(int test)
{
try{
if(test==0) throw test; // throw int
if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double
}
catch(...) { // catch all exceptions
cout << "Caught One!\n";
}
}
int main()
{
cout << "Start\n";
Xhandler(0);
Xhandler(1);
Xhandler(2);
cout << "End";
return 0;
}
This program displays the following output.
Start
Caught One!
Caught One!
Caught One!
End

Rethrowing an Exception

If you wish to rethrow an expression from within an exception handler, you may do so by calling throw,
by itself, with no exception. This causes the current exception to be passed on to an outer try/catch

sequence. The most likely reason for doing so is to allow multiple handlers access to the exception. For
example, perhaps one exception handler manages one aspect of an exception and a second handler copes
with another. An exception can only be rethrown from within a catch block (or from any function called
from within that block). When you rethrow an exception, it will not be recaught by the same catch

statement. It will propagate outward to the next catch statement. The following program illustrates
rethrowing an exception, in this case a char * exception.

// Example of "rethrowing" an exception.
#include <iostream>
using namespace std;
void Xhandler()
{
try {
throw "hello"; // throw a char *
}
catch(const char *) { // catch a char *
cout << "Caught char * inside Xhandler\n";
throw ; // rethrow char * out of function
}
}
int main()
{
cout << "Start\n";

7 | P a g e

try{
Xhandler();
}
catch(const char *) {
cout << "Caught char * inside main\n";
}
cout << "End";
return 0;
}
This program displays this output:
Start
Caught char * inside Xhandler
Caught char * inside main
End

Restricting Exceptions

You can restrict the type of exceptions that a function can throw outside of itself. In fact, you can also
prevent a function from throwing any exceptions whatsoever. To accomplish these restrictions, you must
add a throw clause to a function definition. The general form of this is shown here:

ret-type func-name(arg-list) throw(type-list)
{
// ...
}

Here, only those data types contained in the comma-separated type-list may be thrown by the function.
Throwing any other type of expression will cause abnormal program termination. If you don't want a
function to be able to throw any exceptions, then use an empty list.

Attempting to throw an exception that is not supported by a function will cause the standard library
function unexpected() to be called. By default, this causes abort() to be called, which causes abnormal
program termination.

The following program shows how to restrict the types of exceptions that can be
thrown from a function.
// Restricting function throw types.
#include <iostream>
using namespace std;
// This function can only throw ints, chars, and doubles.
void Xhandler(int test) throw(int, char, double)
{
if(test==0) throw test; // throw int
if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double
}
int main()
{
cout << "start\n";
try{
Xhandler(0); // also, try passing 1 and 2 to Xhandler()
}
catch(int i) {
cout << "Caught an integer\n";
}
catch(char c) {
cout << "Caught char\n";
}
catch(double d) {
cout << "Caught double\n";
}

8 | P a g e

cout << "end";
return 0;
}

5.

Part –III
What is stream? Discuss the four streams which are automatically opened when a C++ Program begins
execution.

A stream is a logical device that either produces or consumes information. A stream is linked to a
physical device by the I/O system. All streams behave in the same way even though the actual physical
devices they are connected to may differ substantially. Because all streams behave the same, the same I/O
functions can operate on virtually any type of physical device.

Template Class Character-based class Wide-Character-
based Class

basic_streambuf streambuf wstreambuf
basic_ios ios wios
basic_istream istream wistream
basic_ostream ostream wostream
basic_iostream iostream wiostream
basic_fstream fstream wfstream
basic_ifstream ifstream wifstream
basic_ofstream ofstream wofstream

When a C++ program begins execution, four built-in streams are automatically opened.

They are:

Stream Meaning Default Device
cin Standard input Keyboard
cout Standard output Screen
cerr Standard error output Screen
clog Buffered version of cerr Screen

By default, the standard streams are used to communicate with the console. However, in environments
that support I/O redirection (such as DOS, Unix, OS/2, and Windows), the standard streams can be
redirected to other devices or files.

The standard input stream (cin):

The predefined object cin is an instance of istream class. The cin object is said to be attached to the

standard input device, which usually is the keyboard. The cin is used in conjunction with the stream

extraction operator, which is written as >>

#include <iostream>

using namespace std;

int main()
{
 char name[50];

 cout << "Please enter your name: ";
 cin >> name;
 cout << "Your name is: " << name << endl;

[10]

9 | P a g e

}

The standard output stream (cout):

The predefined object cout is an instance of ostream class. The cout object is said to be "connected to" the

standard output device, which usually is the display screen. The cout is used in conjunction with the

stream insertion operator, which is written as <<

Ex:

#include <iostream>

 using namespace std;

 int main()

{

 char str[] = "Hello C++";

 cout << "Value of str is : " << str << endl;

}

The standard error stream (cerr):

 The predefined object cerr is an instance of ostream class. The cerr object is said to be attached to

the standard error device, which is also a display screen but the object cerr is un-buffered and each stream

insertion to cerr causes its output to appear immediately.

#include <iostream>
using namespace std;
int main()
{
 char str[] = "Unable to read....";

 cerr << "Error message : " << str << endl;
}

The standard log stream (clog):

The predefined object clog is an instance of ostream class. The clog object is said to be attached to the

standard error device, which is also a display screen but the object clog is buffered. This means that each

insertion to clog could cause its output to be held in a buffer until the buffer is filled or until the buffer is

flushed

#include <iostream>
 using namespace std;
 int main()
{
 char str[] = "Unable to read....";

 clog << "Error message : " << str << endl;
}

10 | P a g e

6. What is iterator? Write a simple C++ program to store and display integer elements using STL

Vector class.

Iterators are objects that act, more or less, like pointers. They give you the ability to
cycle through the contents of a container in much the same way that you would use
a pointer to cycle through an array. There are five types of iterators:
Iterator Access Allowed

 Random Access Store and retrieve values. Elements may be accessed randomly.

 Bidirectional Store and retrieve values. Forward and backward moving.

 Forward Store and retrieve values. Forward moving only.

 Input Retrieve, but not store values. Forward moving only.

 Output Store, but not retrieve values. Forward moving only.

#include <iostream>

#include <vector>
using namespace std;

int main() {
 // create a vector to store int
 vector<int> vec;

 int i;

 // display the original size of vec
 cout << "vector size = " << vec.size() << endl;

 // push 5 values into the vector
 for(i = 0; i < 5; i++){

 vec.push_back(i);
 }

 // display extended size of vec
 cout << "extended vector size = " << vec.size() << endl;

 // access 5 values from the vector
 for(i = 0; i < 5; i++){

 cout << "value of vec [" << i << "] = " << vec[i] << endl;
 }

return 0;
}

[10]

 Part – IV

7. What is STL? List and explain the three types of containers in STL.
At the core of the standard template library are three foundational items: containers, algorithms, and
iterators. These items work in conjunction with one another to provide off-the-shelf solutions to a variety
of programming problems.
Containers
Containers are objects that hold other objects, and there are several different types. For example, the
vector class defines a dynamic array, deque creates a double-ended queue, and list provides a linear list.
These containers are called sequence containers because in STL terminology, a sequence is a linear list. In
addition to the basic containers, the STL also defines associative containers, which allow efficient
retrieval of values based on keys. For example, a map provides access to values with unique keys. Thus, a
map stores a key/value pair and allows a value to be retrieved given its key. Each container class defines a
set of functions that may be applied to the container. For example, a list container includes functions that
insert, delete, and merge elements. A stack includes functions that push and pop values.
Algorithms
Algorithms act on containers. They provide the means by which you will manipulate the contents of
containers. Their capabilities include initialization, sorting, searching, and transforming the contents of

[10]

11 | P a g e

containers. Many algorithms operate on a range of elements within a container.
Iterators
Iterators are objects that act, more or less, like pointers. They give you the ability to cycle through the
contents of a container in much the same way that you would use a pointer to cycle through an array.
There are five types of iterators:
Iterator Access Allowed
Random Access Store and retrieve values. Elements may be accessed randomly.
Bidirectional Store and retrieve values. Forward and backward moving.
Forward Store and retrieve values. Forward moving only.
Input Retrieve, but not store values. Forward moving only.
Output Store, but not retrieve values. Forward moving only.

Container Classes:
Vectors
Perhaps the most general-purpose of the containers is vector. The vector class supports a dynamic array.
This is an array that can grow as needed. As you know, in C++ the size of an array is fixed at compile
time. While this is by far the most efficient way to implement arrays, it is also the most restrictive because
the size of the array cannot be adjusted at run time to accommodate changing program conditions. A
vector solves
this problem by allocating memory as needed. Although a vector is dynamic, you can still use the standard
array subscript notation to access its elements. The template specification for vector is shown here:
template <class T, class Allocator = allocator<T> > class vector

Some of the most commonly used member functions are size(), begin(), end(), push_back(), insert(),
and erase(). The size() function returns the current size of the vector. This function is quite useful
because it allows you to determine the size of a vector at run time. Remember, vectors will increase in size
as needed, so the size of a vector must be determined during execution, not during compilation. The begin(

) function returns an iterator to the start of the vector. The end() function returns an iterator to the end of
the vector. As explained, iterators are similar to pointers, and it is through the use of the begin() and end(
) functions that you obtain an iterator to the beginning and end of a vector. The push_back() function puts
a value onto the end of the vector. If necessary, the vector is increased in length to accommodate the new
element. You can also add
elements to the middle using insert(). A vector can also be initialized. In any event, once a vector contains
elements, you can use array subscripting to access or modify those elements. You can remove elements
from a vector using erase()

List
The list class supports a bidirectional, linear list. Unlike a vector, which supports random access, a list can
be accessed sequentially only. Since lists are bidirectional, they may be accessed front to back or back to
front.
A list has this template specification:
template <class T, class Allocator = allocator<T> > class list
Here, T is the type of data stored in the list. The allocator is specified by Allocator, which defaults to the
standard allocator. It has the following constructors:
explicit list(const Allocator &a = Allocator());
explicit list(size_type num, const T &val = T (),
const Allocator &a = Allocator());
list(const list<T, Allocator> &ob);
template <class InIter>list(InIter start, InIter end, const Allocator &a = Allocator());
The first form constructs an empty list. The second form constructs a list that has num elements with the
value val, which can be allowed to default. The third form constructs a list that contains the same elements
as ob. The fourth form constructs a list that contains the elements in the range specified by the iterators
start and end.

Maps
The map class supports an associative container in which unique keys are mapped with values. In essence,
a key is simply a name that you give to a value. Once a value has been stored, you can retrieve it by using
its key. Thus, in its most general sense, a map is a list of key/value pairs. The power of a map is that you
can look up a value given its key. For example, you could define a map that uses a person's name as its key
and stores that person's telephone number as its value. Associative containers are becoming more popular
in programming.
As mentioned, a map can hold only unique keys. Duplicate keys are not allowed. To create a map that

12 | P a g e

allows nonunique keys, use multimap. The map container has the following template specification:
template <class Key, class T, class Comp = less<Key>, class Allocator = allocator<pair<const key, T> >
class map

8. (a) Write a C++ program to create a template function for Bubble Sort and demonstrate sorting of
integers and doubles

#include<iostream>
using namespace std;

#define Max 100
template <class T>
void sort(T a[],int n)

{
int i,j;

for(i=0;i<n-1;i++)
{
 for(j=0;j<n- i-1;j++)

 {
 if(a[j]>a[j+1])

 {
 T temp=a[j];
 a[j]=a[j+1];

 a[j+1]=temp;
 }

 }

 }

}

int main()

{

 int a[Max],i,n;
 double d[Max];
 cout<<"enter array size\n\n";

 cin>>n;
 cout<<"enter array integer elements\n\n";

 for(i=0;i<n;i++)
 cin>>a[i];
 cout<<"enter array double elements\n\n";

 for(i=0;i<n;i++)

 cin>>d[i];
 cout<<"integer part\n\n";
 sort(a,n);

 for(i=0;i<n;i++)

 cout<< a[i]<<"\n";
 cout<<"double part\n\n";
 sort(d,n);

 for(i=0;i<n;i++)

 cout<<d[i]<<"\n";
 return 0;
}

[6]

13 | P a g e

 (b) How are the Object Oriented Programming different from procedure Oriented Programming?

1. Definition

OOP stands for Object-oriented programming and is a programming approach that focuses on data rather
than the algorithm, whereas POP, short for Procedure-oriented programming, focuses on procedural
abstractions.

1. Programs

In OOP, the program is divided into small chunks called objects which are instances of classes, whereas in
POP, the main program is divided into small parts based on the functions.

1. Accessing Mode

Three accessing modes are used in OOP to access attributes or functions – ‘Private’, ‘Public’, and
‘Protected’. In POP, on the other hand, no such accessing mode is required to access attributes or functions
of a particular program.

1. Focus

The main focus is on the data associated with the program in case of OOP while POP relies on functions or
algorithms of the program.

1. Execution

In OOP, various functions can work simultaneously while POP follows a systematic step-by-step approach
to execute methods and functions.

1. Data Control

In OOP, the data and functions of an object act like a single entity so accessibility is limited to the member
functions of the same class. In POP, on the other hand, data can move freely because each function
contains different data.

1. Security

OOP is more secure than POP, thanks to the data hiding feature which limits the access of data to the
member function of the same class, while there is no such way of data hiding in POP, thus making it less
secure.

1. Ease of Modification

New data objects can be created easily from existing objects making object-oriented programs easy to
modify, while there’s no simple process to add data in POP, at least not without revising the whole
program.

1. Process

OOP follows a bottom-up approach for designing a program, while POP takes a top-down approach to
design a program.

1. Examples

Commonly used OOP languages are C++, Java, VB.NET, etc. Pascal and Fortran are used by POP.

[4]

` Part - V

9. Create an abstract base class EMPLOYEE with data members: Name, EmpID and BasicSal and

a pure virtual function Cal_Sal().Create two derived classes MANAGER (with data members:
DA and HRA and SALESMAN (with data members: DA, HRA and TA). Write appropriate
constructors and member functions to initialize the data, read and write the data a nd to calculate

the net salary. The main() function should create array of base class pointers/references to invoke
overridden functions and hence to implement run

[10]

14 | P a g e

#include<iostream>

#define Max 20
using namespace std;

class EMPLOYEE {
 public:

 char name[Max];
 int empid;

 float basic;
 EMPLOYEE()
 {

 }

 void read()
 {
 cout<<"\n enter employee number:";

 cin>>empid;
 cout<<endl<<"Enter employee name:";

 cin>>name;
 cout<<endl<<"Enter the basic salary:";
 cin>>basic;

 }
 void putinfo()

 {
 cout << " Employee number is : " << empid;
 cout << "\nName : " << name;

 cout << "\nbasic : " << basic << "\n";
 }

 virtual void calsal() = 0; // Pure virtual function ie why EMPLOYEE becomes a abstract
base class
};

class MANAGER:public EMPLOYEE

{
 float da,it,hra,netsal,gross;
 public:

 MANAGER()
 {

 da=it=hra=netsal=gross=0;
 }
 void calsal()

 {
 da=basic*0.52;

 hra=basic*0.65;
 gross=basic+hra+da;
 it=gross*0.3;

 netsal=gross- it;
 cout<<"Manager Details:"<<endl;

 EMPLOYEE::putinfo();
 cout << "DA : " << da;
 cout << "\nHRA : " << hra;

 cout << "\nGROSS : " << gross ;
 cout<<"\n IT :" <<it;

 cout<<"\n NETSAL :"<<netsal;
 }
};

class SALESMAN: public EMPLOYEE

15 | P a g e

{

 float da,it,hra,netsal,gross,ta;
 public:

 SALESMAN()
 {
 da=it=ta=hra=netsal=gross=0;

 }
 void calsal()

 {
 da=basic*0.42;
 hra=basic*0.52;

 ta=basic*0.32;
 gross=basic+da+hra+ta;

 it=gross*0.3;
 netsal=gross- it;
 cout<<" Salesman Details:"<<endl;

 EMPLOYEE::putinfo();
 cout << "DA : " << da;

 cout << "\nHRA : " << hra;
 cout<<"\n TA :"<<ta;
 cout << "\nGROSS : " << gross ;

 cout<<"\n IT :" <<it;
 cout<<"\n NETSAL :"<<netsal;

 }
};

int main()
 {

 // base class pointer
 MANAGER m;
 SALESMAN s;

 EMPLOYEE *p[]={
 &m,&s

 };

 cout<<"\nEnter manager details\n";

 p[0]->read();

 cout<<"\nEnter salesman details\n";
 p[1]->read();

 for(int i=0;i<2;i++)
 p[i]->calsal();

 return 0;
 }

10. Write a program to implement FILE I/O operations on characters. I/O operations includes
inputting a string, Calculating length of the string, Storing the string in a file, fetching the stored

characters from it, etc.

#include <iostream>
#include <vector>
using namespace std;

int main() {

 // create a vector to store int
 vector<int> vec;
 int i;

[10]

16 | P a g e

 // display the original size of vec
 cout << "vector size = " << vec.size() << endl;

 // push 5 values into the vector
 for(i = 0; i < 5; i++){

 vec.push_back(i);
 }

 // display extended size of vec
 cout << "extended vector size = " << vec.size() << endl;

 // access 5 values from the vector

 for(i = 0; i < 5; i++){
 cout << "value of vec [" << i << "] = " << vec[i] << endl;
 }

return 0;
}

O/P:

vector size = 0

extended vector size = 5

value of vec [0] = 0

value of vec [1] = 1

value of vec [2] = 2

value of vec [3] = 3

value of vec [4] = 4

