

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3 – Jan. 2020

Sub: Unix and Shell Programming Sub Code: 18MCA12

Date: 13/1//2020 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each

Module

 PART I MARKS

OBE

CO

RBT

1 Explain the below mentioned commands with its usage and examples.
i) tar ii) cpio iii) nice iv)kill v)at

OR

 [10] CO5 L2

2a) Who is a super user? Explain the privileges of super user. [5] CO3 L1

b) Explain briefly the commands used to manage the disk space in Unix [5] CO4 L2

3 a)

PART II
What is a process? Explain the mechanism of process creation.

[5] CO2 L1

b) Explain foreground and background processes in detail.
OR

[5] CO2 L2

4 Write a note on
i) batch ii) sh iii) export iv)eval v)exec

[10] CO4 L2

5
PART III

Discuss the concept of conditional parameters substitution in shell

programs
OR

[10]

CO4

L2

6 List the command that lets the user recall previously executed commands

with example. Mention four different ways how this command can be used

in Unix.

[10]
CO5 L2

7a)
PART IV

With a suitable input file, explain the general structure and the operational

mechanism of an awk script.

[5]

CO4

L2

b) Explain internal and external commands. [5] CO5 L2

8

OR

Write an awk script to delete duplicate line from text file. The order of

original lines must remain unchanged.

[10]

CO4

L3

9
PART V

Why do we use history command? What is the output after each command

i) grep http !30:4 iii)!find : s/pl/java

ii) echo !$:r iv) !Cp :gs/doc/html

OR

[10] CO5 L3

10a) Explain UNIX start up and shut down process. [5] CO5 L2

b) Demonstrate logical and relational operators in awk with suitable

examples.
[5] CO4 L2

1. Explain the below mentioned commands with its usage and examples.

i) tar ii) cpio iii) nice iv)kill v)at
i) tar

The tar is a tape archive command that was being used before the emergence of cpio. It

can create archives on tapes and floppy drives. Some features are –

 It doesn’t use standard input to obtain a file list

 It accepts file and directory names as arguments

 It copies one or more directory trees, in a recursive manner

 It can append to an existing archive, without overwriting.

Backing Up Files (-c)

The illustration of tar command for archiving files is –

tar –cvf /dev/fd0 /home/john/*.sh

a /home/john/test.sh 1 tape blocks

a /home/john/caseEx.sh 1 tape blocks

a /home/john/evalEx.sh 5 tape blocks

The above command indicates that all the files with extension .sh in /home/john are

archived into /dev/fd0. The character a at every line of output indicates the files are

being appended into the device.

Restoring Files (-x)

Files archived in specific device are restored using –x option. When file/directory name is

not specified, all the files from the backup device are restored.

tar –xvf /dev/fd0

x /home/john/test.sh 1 tape blocks

x /home/john/caseEx.sh 1 tape blocks

x /home/john/evalEx.sh 5 tape blocks

Displaying the Archive (-t)

The –t option is used to display the contents of the device in a long format (similar to ls –l).

tar –tvf /dev/fd0

rwxr-xr-x 203/50 472 Jun 4 10.23 2017 ./test.sh

rwxr-xr-x 203/50 583 Jun 4 11.51 2017 ./caseEx.sh

rwxr-xr-x 203/50 87 Jun 4 9.37 2017 ./evalEx.sh

Observe that file names are displayed as relative paths.

ii)cpio

The cpio (copy input-output) command copies files to and from a backup device. It uses

standard input to take the list of file names. Then the files are copied along with their

contents and header to standard output. Later, from standard output it is redirected to a file

or a device. The cpio command uses two options viz. -o for output and –i for input, of which

any one of them must be used.

5.15.1 Backing Up Files (-o)

The following example uses the ls command to generate list of all filenames as an input to

cpio command. Then –o option is used to create archive on the standard output, which

needs to be redirected to a device file.

ls | cpio –ov > /dev/fd0

caseEx.sh

test.lst

emp.lst

here.sh

tputEx.sh

4 blocks #total size of the archive

The –v option displays each filename on the terminal while it is being copied. The above

command compresses the files listed and stores the compressed file into /dev/fd0.

5.15.2 Restoring Files (-i)

Compressed files can be restored using –i option as shown below –

cpio –iv < /dev/fd0

caseEx.sh

test.lst

emp.lst

here.sh

tputEx.sh

4 blocks

While restoring the subdirectories, the cpio command maintains the same subdirectory

structures in the hard disk.

iii)nice

The nice command with & operator is used to reduce the priority of jobs. Then more important

jobs have greater access to the system resources.

To run a job with a low priority, use the command prefixed with nice as shown –

$nice wc emp.lst

15 31 741 emp.lst

iv) kill

The kill command sends a signal with the intention of killing one or more processes. It is an

internal command in most of the shells. The external command /bin/kill is executed only

when the shell lacks the kill capability. One or more PID are given as arguments to kill

command and by default, it uses the SIGTERM (number 15) signal.

$kill 12815

v)at

The at command takes one argument as the time specifying when the job has to be

executed. For example,

$ at 10:44 #press enter by giving time

at> ls –l > out.txt #Give the command to be executed

at> <EOT> #Press [CTRL+d]

job 10 at 2018-01-01 10:44

2.a. Who is a super user? Explain the privileges of super user.
A system administrator (or super user or root user) has vast powers and access to almost

everything in UNIX system. System admin is responsible for managing entire system

like maintaining user accounts, security, disk space, backups etc.

Any user can acquire the status of superuser, if he/she knows the root password. For

example the user john may become superuser using the command su as shown –

$ su

password: ******* #give root’s password

pwd #working directory unchanged

/home/john

Following are some of the important privileges of a system administrator:

 Changing contents or attributes (like permission, ownership etc) of any file. He/she

can delete any file even if the directory is write-protected.

 Initiate or kill any process.

 Change any user’s password without knowing the existing password

 Set the system clock using date command.

 Communicate with all users at a time using wall command.

 Restrict the maximum size of files that users can create, using ulimit command.

 Control user’s access to the scheduling services like at and cron.

 Control user’s access to various networking services like FTP, SSH (Secured Shell)

etc.

2.b Explain briefly the commands used to manage the disk space in Unix
Reporting Free Space: df

The df command is used to check the amount of free space available in every file system.

$ df

Mounted on

Filesystem 1K-blocks Used Available Use% /dev/mapper/

16663980 6490020 9313800 42% /

/dev/hda3 101105 13684 82200 15% /boot

tmpfs 891796 0 891796 0% /dev/shm

none 891796 40 891756 1% /var/lib

This command displays file system, number of total blocks, used blocks, available space (in

blocks and percentage) and in which directory, the file system is mounted.

5.14.2 Disk Usage: du

Usually, the user will be interested in the space consumption of a specific directory, rather

than entire file system. The du command is used to check the usage of space in a specific

directory recursively.

$ du /home/john

16 /home/john/.kde/Autostart

24 /home/john/.kde

16 /home/john/myDir

8 /home/john/.mozilla/extension

8 /home/john/.mozilla/plugins

24 /home/john/.mozilla

548 /home/john

This command lists the disk usage of each sub directory and finally gives the summary. If

the list of sub-directories is very large and if we are interested only in the summary, -s

option can be used as –

$ du -s /home/john

548 /home/john

If the system admin would likes know the space consumed by all the users, use the

command as –

$du –s /home/*

3.a.What is a process? Explain the mechanism of process creation.

A process is an instance of a running program. A process is said to be born when the

program starts execution and remains alive till the program is active.

There are three major steps in the creation of a process. Three important system calls or

functions viz. fork, exec and wait are used for this purpose. The concept of process

creation cycle will help to write the programs that create processes and helps in debugging

shell scripts. The three steps are explained here –

 Fork: A process in UNIX is created with the help of system call fork. It creates a

copy of the process that invokes it. The process image is identical to that of the

calling process, except few parameters like PID. When a process is forked, the child

gets a new PID. The forking mechanism is responsible for the multiplication of

processes in the system.

 Exec: A new process created through fork is not capable of running a new program.

The forked child needs to overwrite its own image with the code and data of the new

program. This mechanism is known as exec. The child process is said to exec a

new program.

 Wait: The parent then executes the system call wait for the child process to

complete. It picks up the exit status of the child and then continues with its other

functions. A parent may not need to wait for the death of its child.

3.b Explain foreground and background processes in detail.
Every process has a parent process. If you run the command,

$ cat emp.lst

then the process representing cat command is created by the shell process. Now, the shell

is said to be parent process of cat. The hierarchy of every process is ultimately traced to

the first process (PID 0), which is set up when the system is booted. It is like the root

directory of the file system.

A process can have only one parent, but multiple children. The following command creates

two processes cat and grep both are spawned by the shell –

$cat emp.lst | grep ‘director’

 ps: PROCESS STATUS

The ps command is used to display some of the process attributes. This command reads

the data structure of kernel and process tables to fetch the characteristics of processes. By

default, ps display the processes owned by the user running the command. For example –

$ ps

PID TTY TIME CMD

11703 pts/1 00:00:00 bash

11804 pts/1 00:00:00 ps

After the head, every line shows the PID, terminal (TTY) with which the process is

associated (controlling terminal), the cumulative processor time (TIME) that has been

consumed since the process has been started and the process name (CMD).

UNIX is a multitasking system, which allows to run multiple jobs at a time. As there can be

only one process in the foreground, the other jobs must run in the background. There are

two different ways of running the jobs in background – using & operator and using nohup

command. These methods are discussed here.

5.5.1 No Logging out: &

The & operator of shell is used to run a process in the background. The usage is as shown

below –

$ sort –o newlist.lst emp.lst & #terminate line with & symbol

4080 # PID is displayed

$ #prompt is displayed to run another job

The & symbol at the end of the command line will make the job to run in the background.

Immediately, the shell returns PID of the invoked command. And the parent shell will not

wait till the job is completed (or the death of the child process), instead, the prompt is

appeared so that a new job can be executed by the user. However, the shell remains as

the parent of background process. Using & symbol, any number of jobs may be run in the

background, if the system can sustain the load.

5.5.2 Log Out Safely : nohup

Normally, when the background processes are running, the user cannot logout. Because,

shell is the parent of all the background processes and logging out kills the shell. And, by

default when the parent shell is killed, all child processes will also die automatically. To

avoid this, UNIX provides an alternative command nohup (no hangup). When this

command is prefixed with any command, even after logging out, the background process

keeps running. Note that the symbol & has to be used even in this case. For example,

$nohup sort emp.lst &

4154

nohup: appending output to ‘nohup.out’

Here, the shell returns the PID and some shells display the message as shown. When

nohup command is run, it sends the standard output of the command to the file nohup.out.

Now, one can safely logout the system, without aborting the command.

4. Write a note on

i) batch ii) sh iii) export iv)eval v)exec
i)batch

The batch command schedules the job when the system overhead reduces. This

command does not use any arguments, but it uses internal algorithm to determine the

actual execution time. This will prevent too many CPU-hungry jobs from running at the

same time.

$ batch < evalEx.sh #evalEx.sh will be executed later

job 15 at 2007-01-09 11:44

Any job scheduled with batch goes to special at queue from where it will be taken for

execution.

The sh Command

When a shell script is executed, the shell spawns (a child process created by parent

process is known as spawning) a sub-shell and this sub-shell actually executes the script

(Read Section 1.7.2 from the Module 1 for more explanation). When the script execution is

completed the child shell is terminated and the control is returned to the parent shell.

One can explicitly invoke a sub-shell using sh command to execute a shell script. The

syntax would be –

$sh filename.sh

export

The values stored in the shell variables are local to the shell and they are not passed on to

the child shell. But, one can use export command to pass the variables used in the parent

shell into the child shell.

x=10 #x is 10 on a parent shell

$ export x #parent x is exported to child

$ sh ex.sh #child shell is spawned to execute ex.sh

The value of x is 10 #value 10 got printed for x

The value of x is 20 #x is 20 after new assignment

$ echo $x

10 #value available with parent shell is printed

5. Discuss the concept of conditional parameters substitution in shell

programs
We know that to evaluate a variable in shell scripts, we will use $ symbol. We have also

discussed earlier (Section 1.7.11 of Module1) that the expr command is used for evaluation

of expression. But, Shell provides an interesting format to evaluate a variable depending on

whether the variable has some defined value or a null value. This is known as parameter

substitution. The syntax is as given –

${<var>: <opt> <stg>}

Here, var is a variable to be evaluated

opt can be any one of the symbols +, -, = or ?

stg is a string

The behavior of the parameter substitution can be better understood based on the symbols

with which it is used as discussed hereunder.

The + Option: If the var contains a defined value and not null, then it evaluates to stg.

This can be understood in the following examples:

 Ex1: Assign a variable x with 10 and test for parameter substitution as shown –

$x=10

$echo ${x: + “x is defined”}

x is defined

As the value of x is not null, the string (stg) part in the expression got evaluated.

The – Option: This is quite opposite to + option. Here if the var do not contains a defined

value and it is null, then it evaluates to stg. This is useful in setting default value for a

variable/filename when user forgets to provide the value. But, the default value provided

with – option is only for that moment, and var will not be assigned with that value.

Consider following examples:

 Ex1: Use an un-assigned variable x and give it a default value.

$echo ${x: - 10}

10

$echo $x

#prints nothing

$

Here, the variable x was unassigned before. So, as it is null, value 10 will be

assigned. But, in the prompt if we check its value now, it is still null only.

The = Option: This option goes one step ahead of – option, where it assigns the value to

the variable. If we use = option inside the parameter substitution, then explicit assignment

is not required.

 Ex:

$echo ${x:=10} #10 is assigned to x permanently

10

$echo $x #verify value of x

10

The ? Option: It evaluates the parameter if the variable is assigned and not null.

Otherwise, it echoes a string and kills the shell. Consider the following script –

$ cat > test.sh

echo “Enter a file name:”

read fname

${fname: ? “No file name entered”}

echo fname

[Ctrl+C]

6. List the command that lets the user recall previously executed commands

with example. Mention four different ways how this command can be used in

Unix.
The history command in bash displays all commands that are previously executed, and in

ksh, it displays last 16 commands. One can mention how many commands he/she would

like to see, by giving the number as an argument to history command as –

$ history 5 #in bash

Or $ history -5 #in ksh

Accessing Previous Commands by Event Numbers (! And r) : The ! symbol (in ksh,

we should use r) is used to repeat the previous command. To repeat the immediate

previous command, use –

$!! #it repeats previous command and executes.

The same job can be done with r in ksh.

If one needs to execute the specific command, the event number must be attached as –

$!35 # executes command with event number 35

Executing Previous Commands by Context: It is quite difficult for any user to

remember the event number of all the previous commands he/she used in past. But,

there is a chance that he/she will be remembering first character/string of the command.

The ! or r will help the user to recollect the commands by giving the specific character

as below –

$!g #executes last command which started with g (in bash)

Or $ r g # same task, in ksh

Substitution in Previous Commands: Frequently, user may need to execute any of

the previous commands only after some modification in them – say changing the pattern

in grep command, changing the string etc. This is possible with the help of modifier :s

and the / as the delimiter between old and new patterns.

Consider an example – assume that, we had executed the echo command as –

$ echo $HOME $PATH

This would display the environment variables HOME and PATH. Now, we would like to

replace PATH by SHELL. This can be done using the following command –

$!echo:s/PATH/SHELL

echo $HOME $SHELL

/home/john /bin/bash

Here, the command has the meaning – “in the previous echo command, replace PATH

by SHELL”

 Using Last Argument to Previous Command ($_): Frequently we use several

commands on the same file. In such situations, instead of specifying filename every

time, we can use $_ as the abbreviated filename. The $_ indicates that last argument to

previous command. For example, if we create a directory Test using mkdir command

and then we would like to change the directory to this new directory, we can use the

command as –

$ mkdir Test # create new directory Test

$ cd $_ # change directory to Test

$ pwd # verify

/home/john/Test

7.a With a suitable input file, explain the general structure and the

operational mechanism of an awk script.
The syntax of awk command is –

awk options ‘selection_criteria {action}’ file(s)

Here, the selection_criteria is a form of addressing and it filters input and selects lines. The

action indicates the action to be taken upon selected lines, which must be enclosed within

the flower brackets. The selection_criteria and action together constitute an awk program

enclosed within single quotes. The selection_criteria in awk can be a pattern as used in

context addressing. It can also be a line addressing, which uses awk’s built-in variable NR.

The selection_criteria can be even a conditional expressions using && and || operators.

Consider the following example of awk command to select all the directors in the file

emp.lst.

$ awk '/director/{print}' emp.lst

9876|jai sharma|director|production|03/12/50|7000

2365|barun sengupta|director|personnel|05/11/47|7800

1006|chanchal sanghvi|director|sales|09/03/38|6700

6521|lalit chowdury|director|marketing|09/26/45|8200

The awk statements are usually applied on all lines selected by address (selection criteria).

But, if we want to print something before the processing starts or after completing the

process, then BEGIN and END sections are useful.

The BEGIN and END sections are optional and have syntax as –

BEGIN{ action}

END { action}

The usage of these sections are depicted in the below given example. Here, in the BEGIN

section we will print the heading for the columns and in the END section, we will print

average basic pay. Let us first create a file newPayroll.awk (either using vi editor or cat

command) as shown below –

7.b Explain internal and external commands.
From the process point of view, the shell can recognize three types of commands as

below–

 External Commands: The most commonly used UNIX utilities and programs like

cat, ls, date etc. are called as external commands. The shell creates a process for

each of such commands when they have to be executed. And, the shell remains as

their parent.

 Shell Scripts: The shell spawns another shell to execute shell scripts. This child

shell then executes the commands inside the script. The child shell becomes the

parent of all the commands within that script.

 Internal Commands: Some of the built-in commands like cd, echo etc. are internal

commands. They don’t generate a process and are executed directly by the shell.

Similarly variable assignment statements like x=10 does not create a child process.

Write an awk script to delete duplicate line from text file. The order of original lines must

remain unchanged.

BEGIN {i=1}

{

flag=1;

for(j=1;j<i && flag ; j++)

{

if(x[j]==$0)

flag=0;

}

if (flag)

{

x[i]=$0;

printf("\n%s",x[i]);

}

i++;

}

8. Why do we use history command? What is the output after each command

iii) grep http !30:4 iii)!find : s/pl/java

iv) echo !$:r iv) !Cp :gs/doc/html
The history command in bash displays all commands that are previously executed, and in

ksh, it displays last 16 commands.

i) grep http !30:4

runs grep http with fourth argument of

ii) !find : s/pl/java

Repeats last find command after substituting java for pl

iii) echo !$:r

removes extension from previous commands filename

iv) !Cp :gs/doc/html

Removes last cp command after globally substituting html for doc

9. Explain UNIX start up and shut down process.
Whenever the system is about to start or about to shutdown, series of operations are

carried out. We will discuss few of such operations here.

 Startup: When the machine is powered on the system looks for all peripherals and

then goes through a series of steps that may take some time to complete the boot

cycle. The first major event is the loading of the kernel (/kernel/genunix in

Solaris and /boot/vmlinuz in Linux) into memory. The kernel then spawns init,

which in turn spawns further processes. Some of these processes monitor all the

terminal lines, activate the network and printer. The init becomes the parent of all

the shells.

A UNIX system boots to any one of two states (or mode) viz. single user mode or

multiuser mode. This state is represented by a number or letter called as run level.

The default run level and the actions to be taken for each run level are controlled by

init. The two states are discussed here –

o Singer-user Mode: The system admin uses this mode to perform

administrative tasks like checking and backing up individual file systems.

Other users are prevented from working in single-user mode.

o Multiuser Mode: Individual file systems are mounted and system daemons

are started in this mode. Printing is possible only in multiuser mode.

The who –r command displays the run level of our system:

$ who -r

. run-level 3 2007-01-06 11:10 last=S

The machine which runs at level 3 supports multiuser and network operations.

 Shutdown: While shutting down the system, the administrator has certain roles. The

system shutdown performs following activities –

o Through the wall command notification is sent to all the users about system

shutdown and asks to logout.

o Sends signals to all running processes to terminate normally.

o Logs off the users and kills remaining processes

o Un-mounts all secondary file systems.

o Writes file system status to disk to preserve the integrity of file system

o Notifies users to reboot or switch-off, or moves the system to single-user

mode.

10. Demonstrate logical and relational operators in awk with suitable

examples.
The relational operators like greater than (>), less than (<), comparison (==), not equal to

(!=) etc. can be used with awk.

Ex1. The command given below is to select the lines containing director OR (||) chairman.

As the 3rd field of the file emp.lst has the designation, we can compare it directly.

$ awk -F "|" '$3=="director" || $3=="chairman" {

> printf "%-20s %-12s \n", $2, $3}' emp.lst

jai sharma director

barun sengupta director

n.k. gupta chairman

chanchal sanghvi director

lalit chowdury director

Ex2. Using not equal to operator (!=) and AND (&&) operator, we can achieve the negation

of list obtained in Ex1. That is, following command displays all the lines not containing

director and chairman.

$ awk -F "|" '$3 != "director" && $3 != "chairman" {

>printf "%-20s %-12s \n", $2, $3}' emp.lst

a.k. shukla g.m.

sumit chakrobarty d.g.m

karuna ganguly g.m.

s.n. dasgupta manager

jayant Chodhury executive

anil aggarwal manager

shyam saksena d.g.m

sudhir Agarwal executive

j.b. saxena g.m.

v.k. agrawal g.m.

AWK supports the following logical operators −

Logical AND

It is represented by &&. Its syntax is as follows −

Syntax

expr1 && expr2

It evaluates to true if both expr1 and expr2 evaluate to true; otherwise it returns false. expr2 is

evaluated if and only if expr1 evaluates to true. For instance, the following example checks

whether the given single digit number is in octal format or not.

Example

[jerry]$ awk 'BEGIN {

 num = 5; if (num >= 0 && num <= 7) printf "%d is in octal format\n", num

}'

On executing this code, you get the following result −

Output

5 is in octal format

Logical OR

It is represented by ||. The syntax of Logical OR is −

Syntax

expr1 || expr2

It evaluates to true if either expr1 or expr2 evaluates to true; otherwise it returns false. expr2 is

evaluated if and only if expr1 evaluates to false. The following example demonstrates this −

Example

[jerry]$ awk 'BEGIN {

 ch = "\n"; if (ch == " " || ch == "\t" || ch == "\n")

 print "Current character is whitespace."

}'

On executing this code, you get the following result −

Output

Current character is whitespace

Logical NOT

It is represented by exclamation mark (!). The following example demonstrates this −

Example

! expr1

It returns the logical compliment of expr1. If expr1 evaluates to true, it returns 0; otherwise it

returns 1. For instance, the following example checks whether a string is empty or not.

Example

[jerry]$ awk 'BEGIN { name = ""; if (! length(name)) print "name is empty string." }'

On executing this code, you get the following result −

Output

name is empty string.

