
Page 1 of 10

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2 Answer Key– Nov. 2020

Sub: System Software Sub Code: 18MCA34 Branch: MCA

Date: 05/11/2020 Duration: 90 min’s Max Marks: 50 Sem III

Q1) Explain following machine independent features of assembler [10]
i) Program block
ii) Control Sections and Program linking

1) Program block

 Program block refers to segment of code that are rearranged within a single object program unit and

control section to refer to segments that are translated into independent object program units.

Assembler Directive USE indicate which portion of the source program belong to various blocks

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block.

If no USE statements are included, the entire program belongs to this single block.

Each program block may actually contain several separate segments of the source program. Assemblers

rearrange these segments to gather together the pieces of each block and assign address.

Pass1

A separate location counter for each program block is maintained. Save and restore LOCCTR when

switching between blocks. At the beginning of a block, LOCCTR is set to 0. Assign each label an address

relative to the start of the block. Store the block name or number in the SYMTAB along with the assigned

relative address of the label Indicate the block length as the latest value of LOCCTR for each block at the

end of Pass1 Assign to each block a starting address in the object program by concatenating the program

blocks in a particular order

Pass2 : Calculate the address for each symbol relative to the start of the object program by adding: The

location of the symbol relative to the start of its block. The starting address of this block

2) Control Sections and program linking

• A control section is a part of the program that maintains its identity after assembly; each control

section can be loaded and relocated independently of the others.

• Different control sections are most often used for subroutines or other logical subdivisions. The

programmer can assemble, load, and manipulate each of these control sections separately.

• Because of this, there should be some means for linking control sections together. For example,

instructions in one control section may refer to the data or instructions of other control sections.

Page 2 of 10

Since control sections are independently loaded and relocated, the assembler is unable to process

these references in the usual way. Such references between different control sections are called

external references.

• The assembler generates the information about each of the external references that will allow the

loader to perform the required linking. When a program is written using multiple control sections,

the beginning of each of the control section is indicated by an assembler directive – assembler

directive: CSECT The syntax secname CSECT

• separate location counter is maintained for each control section Control sections differ from program

blocks in that they are handled separately by the assembler.

Q2) Write One pass Assembler algorithm. [10]

Q3) Explain following machine dependent features of assembler [10]

i) Instruction Formats and Addressing modes
ii) Program Relocation

Page 3 of 10

1) Instruction Formats and Addressing modes
The instruction formats depend on the memory organization and the size of the memory.
In SIC machine the memory size is 215 bytes. Accordingly it supports only one instruction format.
Whereas the memory of a SIC/XE machine is 220 bytes (1 MB).
This supports four different types of instruction types, they are:

• 1 byte instruction
• 2 byte instruction
• 3 byte instruction
• 4 byte instruction

Instructions can be
• Instructions involving register to register („register to register‟ instructions are faster than „register

to memory‟ instruction because they do not require memory reference)
• Instructions with one operand in memory, the other in Accumulator (Single operand instruction)
• Extended instruction format

Addressing Modes are:

 Index Addressing(SIC):
Syntax Opcode m, x
Example STCH BUFFER, X

 Indirect Addressing: prefixed with @
Syntax Opcode @m
Example J @RETADR

 Immediate addressing: prefixed with#
Syntax Opcode #c
Example LDA #3

 PC-relative:
Syntax Opcode m

 Base relative:
Syntax Opcode m

Instruction involving Register-Register:
During pass 1 the registers can be entered as part of the symbol table itself. The value for these registers is
their equivalent numeric codes.
During pass2, these values are assembled along with the mnemonics object code. If required a separate
table can be created with the register names and their equivalent numeric values.
Instruction involving Register-to-memory:
Most of the register-to-memory instructions are assembled using either program-counter relative or base
relative addressing.
Program-Counter Relative: In this usually format-3 instruction format is used. The instruction contains the
opcode followed by a 12-bit displacement value. The range of displacement values are from 0 -2048. This
displacement (should be small enough to fit in a 12-bit field) value is added to the current contents of the
program counter to get the target address of the operand required by the instruction.

TA = (PC) + displacement value

Base-Relative Addressing Mode: in this mode the base register is used to mention the displacement value.
Therefore the target address is

TA = (base) + displacement value

2) Program Relocation.

Page 4 of 10

It is often desirable to have more than one program at a time sharing the memory and other resources
of the machine.
In such a situation the actual starting address of the program is not known until the load time. Program
in which the address is mentioned during assembling itself. This is called Absolute Assembly or
Absolute Program.

Since assembler will not know actual location where the program will get loaded, it cannot make the
necessary changes in the addresses used by the program. However, the assembler identifies for the
loader those parts of the program which need modification.
An object program that has the information necessary to perform this kind of modification is called the
relocatable program.

This can be accomplished with a Modification record having following format:
Modification record
Col. 1 M
Col. 2-7 Starting location of the address field to be modified, relative to the beginning of the program
(Hex)
Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in half-bytes.
The starting location is the location of the byte containing the leftmost bits of the address field to be
modified. If the field contains an odd number of half-bytes, the starting location begins in the middle of
the first byte.

Q4 a) Explain absolute loader with a algorithm [5]

The operation of absolute loader is very simple. The object code is loaded to specified locations in the
memory. At the end the loader jumps to the specified address to begin execution of the loaded program.
The role of absolute loader The advantage of absolute loader is simple and efficient. But the
disadvantages are, the need for programmer to specify the actual address, and, difficult to use
subroutine libraries.

Begin
read Header record

Page 5 of 10

verify program name and length
read first Text record
while record type is <> ‘E’ do
 begin
 {if object code is in character form, convert into internal representation} move object code to specified
location in memory
read next object program record
end
jump to address specified in End record
end

Q4 b) Explain bootstrap loader with a algorithm [5]

When a computer is first turned on or restarted, a special type of absolute loader, called bootstrap
loader is executed. This bootstrap loads the first program to be run by the computer -- usually an
operating system. The bootstrap itself begins at address 0. It loads the OS starting address 0x80. No
header record or control information, the object code is consecutive bytes of memory.
The algorithm for the bootstrap loader is as follows

Begin
X=0x80 (the address of the next memory location to be loaded
Loop
 A←GETC (and convert it from the ASCII character code to the value of the hexadecimal digit) save
the value in the high-order 4 bits of S
 A←GETC combine the value to form one byte A← (A+S) store the value (in A) to the address in
register X
 X←X+1
End

Q5) Explain following loader design options [10]

i) Linkage Editors

ii) Dynamic Linking

1. Linkage Editor
The figure below shows the processing of an object program using Linkage editor.

Page 6 of 10

A linkage editor produces a linked version of the program – often called a load module or an executable
image, which is written to a file or library for later execution. The linked program produced is generally in
a form that is suitable for processing by a relocating loader.
Linkage editor can perform many useful functions besides simply preparing an object program for
execution.

 produce core image if actual address is known in advance
 improve a subroutine (PROJECT) of a program (PLANNER) without going back to the original versions of

all of the other subroutines

INCLUDE PLANNER(PROGLIB) DELETE PROJECT {delete from existing PLANNER} INCLUDE
PROJECT(NEWLIB) {include new version} REPLACE PLANNER(PROGLIB) external references are retained
in the linked program

 Linkage editors can also be used to build packages of subroutines or other control sections that are
generally used together.
Linkage editors often allow the user to specify that external references are not to be resolved by
automatic library search. Compared to linking loader, Linkage editors in general tend to offer more
flexibility and control, with a corresponding increase in complexity and overhead

2. Dynamic Linking
The scheme that postpones the linking functions until execution. A subroutine is loaded and linked to the
rest of the program when it is first called. This type of functions is usually called dynamic linking, dynamic
loading or load on call. The advantages of dynamic linking are, it allow several executing programs to
share one copy of a subroutine or library. In an object oriented system, dynamic linking makes it possible
for one object to be shared by several programs.

Dynamic linking provides the ability to load the routines only when (and if) they are needed. The actual
loading and linking can be accomplished using operating system service request. Instead of executing a
JSUB instruction that refers to an external symbol, the program makes a load-and-call service request to
the OS. The OS examines its internal tables to determine whether or not the routine is already loaded.
Control is then passed from the OS to routine being called. When the called subroutine completes its
processing, it returns to its caller. OS then returns control to the program that issued the request.

Page 7 of 10

Q6) Explain Program Linking with neat diagram [10]

The Goal of program linking is to resolve the problems with external references (EXTREF) and external

definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section names symbols, called external

symbols, that are defined in this (present) control section and may be used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in this (present) control section

and are defined elsewhere.

ex: EXTREF RDREC, WRREC EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF The assembler must include information in the object program

that will cause the loader to insert proper values where they are required – in the form of Define record (D)

and, Refer record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in

Col. 2-13 for other external symbols

Example records D LISTA 000040 ENDA 000054 D LISTB 000060 ENDB 000070

Refer record

The format of the Refer record (R) along with examples is as shown here.

Page 8 of 10

Col. 1 R

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols

Example records R LISTB ENDB LISTC ENDC R LISTA ENDA LISTC ENDC R LISTA ENDA LISTB

ENDB

Here are the three programs named as PROGA, PROGB and PROGC, which are separately assembled and

each of which consists of a single control section. LISTA, ENDA in PROGA, LISTB, ENDB in PROGB

and LISTC, ENDC in PROGC are external definitions in each of the control sections. Similarly LISTB,

ENDB, LISTC, ENDC in PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA, LISTB,

ENDB in PROGC, are external references. These sample programs used to illustrate linking and relocation.

The following figure shows these three programs as they might appear in memory after loading and linking.

PROGA has been loaded starting at address 4000, with PROG B and PROGC immediately following.

Page 9 of 10

To this is added the address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30).

The result is 004126. That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126. Similarly

the load address for symbols LISTA: PROGA+0040=4040, LISTB: PROGB+0060=40C3 and LISTC:

PROGC+0030=4112 Keeping these details work through the details of other references and values of these

references are the same in each of the three programs.

Q7) Explain all machine independent features of loader [10]

i) Automatic Library Search
This feature allows a programmer to use standard subroutines without explicitly including them in the
program to be loaded.
The routines are automatically retrieved from a library as they are needed during linking.
This allows programmer to use subroutines from one or more libraries. The subroutines called by the
program being loaded are automatically fetched from the library, linked with the main program and
loaded.
The loader searches the library or libraries specified for routines that contain the definitions of these
symbols in the main program.

ii) Loader Options
Loader options allow the user to specify options that modify the standard processing. The options may
be specified in three different ways. They are, specified using a command language, specified as a part of
job control language that is processed by the operating system, and an be specified using loader control
statements in the source program. Here are the some examples of how option can be specified. INCLUDE
program-name (library-name) - read the designated object program from a library DELETE csect-name –
delete the named control section from the set pf programs being loaded CHANGE name1, name2 -
external symbol name1 to be changed to name2 wherever it appears in the object programs

Page 10 of 10

LIBRARY MYLIB – search MYLIB library before standard libraries NOCALL STDDEV, PLOT, CORREL – no
loading and linking of unneeded routines Here is one more example giving, how commands can be
specified as a part of object file, and the respective changes are carried out by the loader.
LIBRARY UTLIB
 INCLUDE READ (UTLIB)
INCLUDE WRITE (UTLIB)
DELETE RDREC,WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE
NOCALL SQRT, PLOT
The commands are, use UTLIB (say utility library), include READ and WRITE control sections from the
library, delete the control sections RDREC and WRREC from the load, the change command causes all
external references to the symbol RDREC to be changed to the symbol READ, similarly references to
WRREC is changed to WRITE, finally

Q8) Write Pass1 algorithm for linking loader [10]

