CMR	-					 r	and in the second
INSTITUTE OF TECHNOLOGY	USN						
	Internal Assesme	ent Test -	-II, No	vembe	er 2020		

Sub:		MA	CHINE L	EARNING				Co	ode:	18MC	A53
Date:	04-11-2020	Duration:	90 mins	Max Marks:	50	Sem:	V	Bra	nch:	MC	A
		Answer Ai	ny 5 QUE	STIONS		ı			Marks		BE
Q1 W	What is linearly in separable		• -		eptron to	implement	t X AND	Y.	10	CO CO3	RBT L5
Q2 D	erive the Gradient Descent	Rule to find the	best fit in P	erceptron model.					10	CO3	L4
	rove that how maximum like or minimize the squared erro							used	10	CO4	L5
	xplain Brute force Bayes C			1					10	CO4	L2
pa co co	onsider a medical diagnosi articular form of cancer (+) omes back positive. It is kn prrect negative result in onl isease. Determine whether	and 2: That the own that the test y 97% of the cas	patient does returns a co ses. Furthern	not (-). A patient prect positive resu nore, only 0.008 of	takes a l lt in only the ent	ab test and y 98% of th	the result e cases a	nd a	10	CO4	L5
	ifferentiate between Gradie								10	CO3	L2
Q 7 D	iscuss biological neural net	work with neat	diagram.						10	CO3	L2
In	pply back propagation algo x_1 u_{13} u_{14} x_2 u_{23} u_{23} u_{33} u_{33} mitial input, weight and bias x_1 x_2 x_3 w_{14} w_{15} w_{24} 0 1 0.2 -0.3 0.4	yalues are given	• as follows:	- 6 θ4 θ5 θ6	cture.				10	CO3	L5

Internal Assessment Test 2 – November. 2020

Sub:			MACHINE	LEARNIN	G			Sub Code:	18MCA 53
Date:	04-11-2020	Duration:	90 min's	Max Marks:	50	Sem	5 th	Branch:	MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

												0	BE
					PART	[MAR KS	со	RI T
Represe	entatio	nal Po	wer of	Perce	otrons								
•	The p	ercep	tron ca	n be v	viewed a	as repres	enting	a hype	erplane				
	decisi point:		rface ir	n the r	n- dimer	nsional s	pace o	f instar	nces (i.e.	,			
•	•	•	tron ou	itouts	a 1 for i	nstances	lving	on one	side of				
	-	-		-		L for inst							
						w figure		,	i the				
	other	side,		cracee		in light c							
(a) A corr	A set of tr ectly. (b) and x ₂ are	aining e A set of	examples f training	and th examp	e decision les that is	+ + (<i>t</i> y a two-inp surface of a not linearly camples are	ut perce a percept separab	tron that le.			10	CO3	
1													
AND G	AIL		170										
AND G X1			X2			t 1							
X1 1			1			1							
X1 1 1			1 -1			1 -1							
X1 1			1			1							
X1 1 1 -1		$\underline{\mathbf{s}}$ w1=0	1 -1 1 -1	0, b =	0	1 -1 -1							
X1 1 -1 -1 Initializ X1	zation : X2	$\mathbf{x} \mathbf{w} 1 = 0$	1 -1 1 -1	0, b =	0 Δw1	1 -1 -1	Δb	 	w2	Ь			
X1 1 -1 -1 Initializ	zation : X2		$ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 0, w2 = \end{array} $			1 -1 -1 -1	Δb	w1	w2	b			

$\frac{1}{1} \frac{1}{1} \frac{1}$						1.			-			<u> </u>	
 10 CO3 14 2) • Perceptron learning converges to a consistent model if D (training set) is linearly separable. • Perceptron learning converges to a consistent model if D (training set) is linearly separable. • If the data is not linearly separable than this will not converge. • If the training examples are not linearly separable, the delta rule converges toward a best-fit approximation to the target concept. • The key idea behind the <i>ideat rule</i> is to use <i>gradient descent</i> to search the hypothesis space of possible weight vectors to find the weights that best fit the training examples. • Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary initial weight vector, then repeatedly modifying it in small steps. • A teach step, the weight vector is allered in the direction that produces the steepest descent along the error surface? The direction of steepest come along the error surface? The direction of steepest come found by computing the derivative of E with respect to with				$\frac{1}{2}$ 1									
 POCH-2 1 1 1 1 1 1 1 1 1 1 1 1 - 1 -					1								
 2) Perceptron learning converges to a consistent model if D (training set) is linearly separable. 2) Perceptron learning converges to a consistent model if D (training set) is linearly separable. a) If the data is not linearly separable than this will not converge. b) If the data is not linearly separable than this will not converge. c) If the data is not linearly separable than this will not converge. c) If the data is not linearly separable weight vectors to find the weights that best fit the training examples. c) Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary initial weight vector, then repeatedly modifying it in small steps. c) At each step, the weight vector is altered in above figure. This process continues until the global minimum error is reached. Derivation of the Gradient Descent Rule How to calculate the direction of steepest descent along the error surface? The direction of steepest to with respect to wi			-1	-5 -1	-	-	-	1	1	-1			
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1 1	_	-	_	1	1	-1			
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
 2) Perceptron learning converges to a consistent model if D (training set) is linearly separable. 2) Perceptron learning converges to a consistent model if D (training set) is linearly separable. Fif the data is not linearly separable than this will not converge. Fif the training examples are not linearly separable than this will not converges toward a best-fit approximation to the target concept. The key idea behind the <i>delta rule</i> is to use <i>gradient descent</i> to search the hypothesis space of possible weight vectors to find the weights that best fit the training examples. Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary initial weight vector, then repeatedly modifying it in small steps. At each step, the weight vector is altered in the direction that produces the steepest descent along the error surface? The direction of the Gradient Descent Rule How to calculate the direction of steepest descent along the error surface? The direction of steepest can be found by computing the derivative of E with respect to each component of the vector w. This vector derivative is called the gradient of E with respect to w , written as 					-	-	-						
 linearly separable. If the data is not linearly separable than this will not converge. If the training examples are not linearly separable, the delta rule converges toward a best-fit approximation to the target concept. The key idea behind the <i>delta rule</i> is to use <i>gradient descent</i> to search the hypothesis space of possible weight vectors to find the weights that best fit the training examples. • Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary initial weight vector, then repeatedly modifying it in small steps. • At each step, the weight vector is altered in the direction that produces the steepest descent along the error surface depicted in above figure. This process continues until the global minimum error is reached. Derivation of the Gradient Descent Rule How to calculate the direction of steepest descent along the error surface? The direction of steepest to w, written as 10 CO3 L4					-	_	-	1	1	-1			
 linearly separable. If the data is not linearly separable than this will not converge. If the training examples are not linearly separable, the delta rule converges toward a best-fit approximation to the target concept. The key idea behind the <i>delta rule</i> is to use <i>gradient descent</i> to search the hypothesis space of possible weight vectors to find the weights that best fit the training examples. • Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary initial weight vector, then repeatedly modifying it in small steps. • At each step, the weight vector is altered in the direction that produces the steepest descent along the error surface depicted in above figure. This process continues until the global minimum error is reached. Derivation of the Gradient Descent Rule How to calculate the direction of steepest descent along the error surface? The direction of steepest to w, written as 10 CO3 L4								•					
	2)	 linearly s If the dat If the dat If the traitoward a The key hypothesis training a The key hypothesis training a Gradient starting visual steepest a steepest continue Derivation How to calcumate the direction respect to ea a gradient of E 	separable. a is not lin ining exam- best-fit ap- idea behind is space of examples.	hearly separation opproximation of the <i>delta</i> of possible v $\frac{1}{3}$ $\frac{2}{3}$ earch deternoit of the error global mine radient De <i>lirection of</i> hent of the ect to \vec{w} , v	rable than ot linearly on to the t <i>rule</i> is to veight veo unines a wal weight or is altered imum err scent Rul <i>steepest</i> ovector <i>w</i> .	this will resparate arget course use gra- ctors to the constant of the vector, the depicte or is real le descent This ve	ll not cor ole, the d ncept. <i>dient des</i> find the v find the v ector that then repe direction d in abov ached.	t minim eatedly n that p ve figur	e conve search that bes izes E t modifyi roduces re. This e of E v is called	rges the st fit the y ng it in the process e? with I the	10	CO3	L4

			[]
	The gradient specifies the direction of steepest increase of E, the		
	training rule for gradient descent is		
	$ec{w} \leftarrow ec{w} + \Delta ec{w}$		
	Where,		
	$\Delta \vec{w} = -\eta \nabla E(\vec{w})$ equ. (4)		
	 Here η is a positive constant called the learning rate, which determines the step size in the gradient descent search. The negative sign is present because we want to move the weight vector in the direction that decreases E. 		
	This training rule can also be written in its component form		
	$w_i \leftarrow w_i + \Delta w_i$ Where, $\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$ equ. (5)		
	$\Delta w_{i} = \eta \sum_{d \in D} (t_{d} - o_{d}) x_{id} \qquad \text{equ. (7)}$ $= \frac{1}{2} \sum_{d} \frac{\partial w_{i}}{\partial w_{i}} (t_{d} - o_{d})^{2}$ $= \frac{1}{2} \sum_{d} 2(t_{d} - o_{d}) \frac{\partial}{\partial w_{i}} (t_{d} - o_{d})$ $= \sum_{d} (t_{d} - o_{d}) \frac{\partial}{\partial w_{i}} (t_{d} - \vec{w} \cdot \vec{x_{d}})$ $\frac{\partial E}{\partial w_{i}} = \sum_{d} (t_{d} - o_{d}) (-x_{i,d}) \qquad \text{equ. (6)}$		
	$\overline{\partial w_i} = \sum_d (t_d - O_d)(-x_{i,d}) \text{equ. (6)}$ Substituting Equation (6) into Equation (5) yields the weight update rule for gradient desc		
3)	Consider the problem of learning a <i>continuous-valued target function</i> such as neural network learning, linear regression, and polynomial curve fitting		
	A straightforward Bayesian analysis will show that under certain assumptions any learning algorithm that minimizes the squared error between the output hypothesis predictions and the training data will output a <i>maximum likelihood (ML) hypothesis</i>	CO4	L5
	 Learner L considers an instance space X and a hypothesis space H consisting of some class of real-valued functions defined over X, i.e., (∀ h ∈ H)[h : X → R] and training examples of the form <xi, di=""></xi,> 		
	• The problem faced by L is to learn an unknown target function $f: X \to R$		L

	$h_{ML} = \underset{h \in H}{argmax} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(d_i - h(x_i))^2}$			
	Maximize the less complicated logarithm, which is justified because of the monotonicity function p			
	$h_{ML} = \underset{h \in H}{argmax} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} (d_i - h(x_i))^2$			
	The first term in this expression is a constant independent of h, and can therefore be discarded, yielding			
	$h_{ML} = argmax_{h \in H} \sum_{i=1}^{m} -\frac{1}{2\sigma^2} (d_i - h(x_i))^2$			
	Maximizing this negative quantity is equivalent to minimizing the corresponding positive quantity			
	$h_{ML} = \underset{h \in H}{argmin} \sum_{i=1}^{m} \frac{1}{2\sigma^2} (d_i - h(x_i))^2$			
	Finally, discard constants that are independent of h.			
	$h_{ML} = \underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} (d_i - h(x_i))^2$			
on	hus, above equation shows that the maximum likelihood hypothesis hML is the ne that minimizes the sum of the squared errors between the observed training lues di and the hypothesis predictions $h(xi)$			
	rute-Force Bayes Concept Learning			
Co	onsider the concept learning problem			
	 Assume the learner considers some finite hypothesis space H defined over the instance space X, in which the task is to learn some target concept c : X → {0,1}. 			
	• Learner is given some sequence of training examples ((x1, d1) (xm, dm)) where xi is some instance from X and where di is the target value of xi (i.e., di = c(xi)).			
	• The sequence of target values are written as $D = (d1 \dots dm)$.			
	Ve can design a straightforward concept learning algorithm to output the aximum a posteriori hypothesis, based on Bayes theorem, as follows:	10	CO4]
B	RUTE-FORCE MAP LEARNING algorithm:			
1	. For each hypothesis h in H, calculate the posterior probability			
	$P(h D) = \frac{P(D h)P(h)}{P(D)}$			
		1		
2	2. Output the hypothesis hMAP with the highest posterior probability			

6)	 Types of Gradient Descent: Batch Gradient Descent: Parameters are updated after computing the gradient of error with respect to the entire training set. computationally expensive. very slow on very large training data. Stochastic Gradient Descent (or Incremental Gradient Descent): Parameters are updated after computing the gradient of error with respect to a single training example. Mini-batch Gradient Descent: Parameters are updated after computing the gradient of error with respect to a subset of the training set. 	10	CO3	L2
5)	To summarize, Bayes theorem implies that the posterior probability P(h D) under our assumed P(h) and P(D h) is $P(D h) = \begin{cases} \frac{1}{ V \ S \ H,D } & \text{if } h \text{ is consistent with } D\\ 0 & \text{otherwise} \end{cases}$ P(cancer) = 0.008 P(-cancer) = 1 - 0.008 = 0.02 P(+ cancer) = 0.98 P(- cancer) = 1 - 0.98 = 0.02 P(- -cancer] = 0.97 P(+ -cancer] = 1 - 0.97 = 0.03 Now a new patient, whose test result is positive, Should we diagnose the patient have cancer or not? $p(A B) = \frac{P(A \land B)}{P(Cancer)} = \frac{P(B A) P(A)}{P(Cancer +)} = \frac{P(A \land B)}{P(Cancer)} = \frac{P(B A) P(A)}{P(Cancer +)} = 0.03 * 0.008 = 0.078$ P(-cancer +) = P(+ -cancer]) = 0.03 * 0.992 = 0.298 Since, P(cancer +) < P(-cancer +) So we can conclude that, Diagnosis : Not having cancer	10	CO4	L5
	Given: $(\forall i \neq j)(P(h_i \land h_j) = 0)$ (the hypotheses are mutually exclusive): $P(D) = \sum_{h_i \in H} P(D \mid h_i)P(h_i)$ $= \sum_{h_i \in VS_{H,D}} 1 \cdot \frac{1}{\mid H \mid} + \sum_{h_i \notin VS_{H,D}} 0 \cdot \frac{1}{\mid H \mid}$ $= \sum_{h_i \in VS_{H,D}} 1 \cdot \frac{1}{\mid H \mid}$ $= \frac{\mid VS_{H,D} \mid}{\mid H \mid}$			

sometime condition The inco or inhibit firing is t amount i assign a weight an neuron fi	The inter-neuronal signal at the synapse is usually chemical diffusion but es electrical impulses. A neuron fires an electrical impulse only if certain in is met. ming impulse signal from each synapse to the neuron is either excitatory tory, which means helping or hindering firing. The condition of causing that the excitatory signal should exceed the inhibitory signal by a certain in a short period of time, called the period of latent summation. As we weight to each incoming impulse signal, the excitatory signal has positive ind the inhibitory signal has negative weight. This way, we can say, ``A res only if the total weight of the synapses that receive impulses in the ``latent summation exceeds the threshold."			
I1=1(=X I2=0(=X				
I3 = 1(=2)				
STEP2:				
Unit 4	Net InputOutput= 0.2^* 1 + $0.4^*0 - 0.5^*$ 1 - 0.4 = $1/(1 + e^{0.7})$ = -0.7= 0.332			
	0.7			
5	= 0.1 = 0.525			
6	= -0.105 = 0.474			
Б. С	alculate Output layer Error rrj = Oj * (1-Oj)(Tj – Oj) alculate Hidden layer Error	10	CO3	L5
E	rrj = O _j * (1-O _j) Summation(Err _k * W _{jk})			
<u>U</u>	nit Error			
6	= 0.474 * (1 - 0.474) * (1 - 0.474) = 0.1311			
5	= 0.525 * (1 - 0.525)* 0.1311 * (-0.2) = -0.0065			
4	= 0.332 * (1- 0.332) *0.1311 * (-0.3) = -0.0087			
	or weights elta wij = (I) Errj * Oi Wij = wij + delta wij			
	or Bias elta Theta j = (l) * Err j Thetaj = Theta j + delta Theta j			

	x ₁	<i>x</i> ₂	<i>x</i> 3	w14	W15	W24	W25	W34	W35	W46	W56	θ_4	θ_5	θ_6	
	1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1	
<u>Let l = 0.9</u> Weights/Bias									N	ew Va	alue				
W46							= -(0.3 + 0				³ 2 = -0	0.261	L	
W56							= -(0.2 + 0	0.9 *	0.131	1 * 0.	.525 =	= -		
0.138															
W14							= 0	.2 + 0	.9 *(-0.008	87) *1	= 0.	192		
W15							= -(0.3 + 0	0.9 *	(-0.00)65) *	• 1 = -	0.30	6	
W24							= 0	.4 + 0	.9*(-	0.008	7) * 0	= 0.4	Ļ		
W25							= 0	.1 + 0	.9 *(-0.006	55) * (0 = 0.	1		
W34							= -(0.5 + 0).9*(-0.008	87) *	1 = -0	.508		
W35							=0.	2 + 0.	9*(-().0065	5) * 1	= 0.1	94		
Theta6					=	0.1	+ 0.9	*0.13	311 =	0.21	8				
Theta5					=	= 0.2	+ 0.9	* (-0	.0065	(5) = 0.	.194				
Theta4					_	- 0.4	± 0	9* (-0	008	7) - (1/08				