

Internal Assesment Test – I, September 2020
Sub: Software Testing Code: 18MCA351

Date: 16-09-2020 Duration: 90 mins Max Marks: 50 Sem: III Branch: MCA

Answer Any 5 QUESTIONs Marks OBE
CO RBT

1a List out quality attributes of software and explain each of them 05 CO1 L2

1 b Differentiate between verification and validation 05 CO1 L1

2 a Discuss how levels of testing are associated with levels of software development.
Draw a supporting diagram.

06 CO2 L1

2b Explain the difference between error, fault, failure and incident. 04 CO2 L2

3 What is Test Oracle ? Discuss the defect life-cycle and draw an appropriate diagram. 2+8 CO1 L2

4 Compare specification-based testing and code-based testing 10 CO2 L3

5 List down the different fault types and give two examples of each. 10 CO2 L3

6 Compare specification, program development and testing phases with help of
 Venn Diagram

10 CO2 L2

7 Explain the Test Case Generation Strategies 10 CO2 L4

8 Discuss Test-Debug cycle with the help of a diagram 10 CO1 L1

1 a. SOFTWARE QUALITY
• Software quality is a multidimensional quantity and is measurable.

Quality Attributes
• These can be divided to static and dynamic quality attributes.

Static quality attributes
• It refers to the actual code and related documents.

Example: A poorly documented piece of code will be harder to understand and
hence difficult to modify. A poorly structured code might be harder to modify and
difficult to test.

Dynamic quality Attributes:

• Reliability
• Correctness

• Completeness
• Consistency
• Usability
• performance

Reliability:
• It refers to the probability of failure free operation.

Correctness:

• Refers to the correct operation and is always with reference to some artefact.
• For a Tester, correctness is w.r.t to the requirements
• For a user correctness is w.r.t the user manual

Completeness:

• Refers to the availability of all the features listed in the requirements or in the
user manual.

• An incomplete software is one that does not fuly implement all features required.

Consistency:
• Refers to adherence to a common set of conventions and assumptions.
• Ex: All buttons in the user interface might follow a common-color coding

convention.

Usability:
• Refer to ease with which an application can be used. This is an area in itself

and there exist techniques for usability testing.
• Psychology plays an important role in the design of techniques for usability

testing.
• Usability testing is a testing done by its potential users.
• The development organization invites a selected set of potential users and asks

them to test the product.
• Users in turn test for ease of use, functionality as expected, performance, safety

and security.
• Users thus serve as an important source of tests that developers or testers within

the organization might not have conceived.
• Usability testing is sometimes referred to as user-centric testing.

Performance:
• Refers to the time the application takes to perform a requested task.

Performance is considered as a non-functional requirement.

Reliability:

• (Software reliability is the probability of failure free operation of software over
a given time interval & under given conditions.)

• Software reliability can vary from one operational profile to another. An
implication is that one might say “this program is lousy” while another might
sing praises for the same program.

• Software reliability is the probability of failure free operation of software in its
intended environments.

• The term environment refers to the software and hardware elements needed to

execute the application. These elements include the operating
system(OS)hardware requirements and any other applications needed for
communication.

1.b. Differences between Verification and Validation

Verification is the process of checking that a software achieves its goal without any bugs. It is
the process to ensure whether the product that is developed is right or not. It verifies whether
the developed product fulfills the requirements that we have. Verification is static testing.
Verification means Are we building the product right?
Validation is the process of checking whether the software product is up to the mark or in other
words product has high level requirements. It is the process of checking the validation of
product i.e. it checks what we are developing is the right product. it is validation of actual and
expected product. Validation is the dynamic testing.
Validation means Are we building the right product?
The difference between Verification and Validation is as follow:

VERIFICATION VALIDATION

It includes checking documents, design, codes
an programs.

It includes testing and validating the actual
product.

Verification is the static testing. Validation is the dynamic testing.

It does not include the execution of the code. It includes the execution of the code.

Methods used in verification are reviews,
walkthroughs, inspections and desk-checking.

Methods used in validation are Black Box
Testing, White Box Testing and non-functional
testing.

It checks whether the software conforms to
specifications or not.

It checks whether the software meets the
requirements and expectations of a customer or
not.

It can find the bugs in the early stage of the
development.

It can only find the bugs that could not be found
by the verification process.

The goal of verification is application and
software architecture and specification. The goal of validation is an actual product.

Quality assurance team does verification.
Validation is executed on software code with the
help of testing team.

It comes before validation. It comes after verification.

2 a. Discuss how levels of testing are associated with levels of software development.
Draw a supporting diagram.

Levels of testing echo the levels of abstraction found in the waterfall model of the software
development life cycle. Although this model has its drawbacks, it is useful for testing as a
means of identifying distinct levels of testing and for clarifying the objectives that pertain to
each level. A diagrammatic variation of the waterfall model, known as the V-Model in ISTQB
parlance, is given in Figure; this variation emphasizes the correspondence between testing and
design levels. Notice that, especially in terms of specification-based testing, the three levels of
definition (specification, preliminary design, and detailed design) correspond directly to three
levels of testing— system, integration, and unit testing. A practical relationship exists between
levels of testing versus specification-based and code based testing. Most practitioners agree
that code-based testing is most appropriate at the unit level, whereas specification-based testing
is most appropriate at the system level. This is generally true; however, it is also a likely
consequence of the base information produced during the requirements specification,
preliminary design, and detailed design phases. The constructs defined for code-based testing
make the most sense at the unit level, and similar constructs are only now becoming available
for the integration and system levels of testing.

2b. Explain the difference between error, fault, failure and incident.

Error—People make errors. A good synonym is mistake. When people make mistakes
while coding, we call these mistakes bugs. Errors tend to propagate; a requirements error
may be magnified during design and amplified still more during coding.
Fault—A fault is the result of an error. It is more precise to say that a fault is the
representation of an error, where representation is the mode of expression, such as narrative
text, Unified Modeling Language diagrams, hierarchy charts, and source code. Defect is a
good synonym for fault, as is bug. Faults can be elusive. An error of omission results in a
fault in which something is missing that should be present in the representation. This
suggests a useful refinement; we might speak of faults of commission and faults of omission.
A fault of commission occurs when we enter something into a representation that is
incorrect. Faults of omission occur when we fail to enter correct information. Of these two
types, faults of omission are more difficult to detect and resolve.
Failure—A failure occurs when the code corresponding to a fault executes. Two subtleties
arise here: one is that failures only occur in an executable representation, which is usually
taken to be source code, or more precisely, loaded object code; the second subtlety is that
this definition relates failures only to faults of commission. How can we deal with failures
that correspond to faults of omission? We can push this still further: what about faults that
never happen to execute, or perhaps do not execute for a long time? Reviews prevent many
failures by finding faults; in fact, well-done reviews can find faults of omission.

Incident—When a failure occurs, it may or may not be readily apparent to the user (or
customer or tester). An incident is the symptom associated with a failure that alerts the user to
the occurrence of a failure.

3. Oracles can also be programs designed to check the behavior of other programs.
For example:
 one might use a matrix multiplication program to check if a matrix inversion program
has produced the correct output.
 In this case, the matrix inversion program inverts a given matrix A and generates B as
the output matrix.
Construction of automated oracles, such as the one to check a matrix multiplication program
or a sort program, requires the determination of input output relationship.
 In general, the construction of automated oracles is a complex undertaking.

Discuss the defect life-cycle and draw an appropriate diagram

Defect life cycle, also known as Bug Life cycle is the journey of a defect cycle, which a defect
goes through during its lifetime. It varies from organization to organization and also from
project to project as it is governed by the software testing process and also depends upon the
tools used.

Defect Life Cycle States:

• New - Potential defect that is raised and yet to be validated.
• Assigned - Assigned against a development team to address it but not yet resolved.
• Active - The Defect is being addressed by the developer and investigation is under

progress. At this stage there are two possible outcomes; viz - Deferred or Rejected.
• Test - The Defect is fixed and ready for testing.
• Verified - The Defect that is retested and the test has been verified by QA.
• Closed - The final state of the defect that can be closed after the QA retesting or can be

closed if the defect is duplicate or considered as NOT a defect.
• Reopened - When the defect is NOT fixed, QA reopens/reactivates the defect.
• Deferred - When a defect cannot be addressed in that particular cycle it is deferred to

future release.

Rejected - A defect can be rejected for any of the 3 reasons; viz - duplicate defect, NOT a
Defect, Non Reproducible.

 4. Compare specification-based testing and code-based testing.

 The Differences Between Black Box Testing (or specification-based testing) and White Box

 Testing (or code-based testing) are listed below.

Criteria Black Box Testing White Box Testing

Definition

Black Box Testing is a
software testing method
in which the internal
structure/ design/
implementation of the
item being tested is NOT
known to the tester

White Box Testing is a software testing
method in which the internal structure/
design/ implementation of the item being
tested is known to the tester.

Levels Applicable
To

Mainly applicable to
higher levels of testing:
Acceptance Testing ,
System Testing

Mainly applicable to lower levels of
testing: Unit Testing, Integration Testing

Responsibility Generally, independent
Software Testers Generally, Software Developers

Programming
Knowledge Not Required Required

Implementation
Knowledge Not Required Required

Basis for Test
Cases

Requirement
Specifications Detail Design

5. List down the different fault types and give two examples of each.

Our definitions of error and fault hinge on the distinction between process and product: process
refers to how we do something, and product is the end result of a process. The point at which
testing and Software Quality Assurance (SQA) meet is that SQA typically tries to improve the
product by improving the process. In that sense, testing is clearly more product oriented. SQA
is more concerned with reducing errors endemic in the development process, whereas testing
is more concerned with discovering faults in a product. Both disciplines benefit from a clearer
definition of types of faults. Faults can be classified in several ways: the development phase in
which the corresponding error occurred, the consequences of corresponding failures, difficulty
to resolve, risk
of no resolution, and so on. My favorite is based on anomaly (fault) occurrence: one time only,
intermittent, recurring, or repeatable. For a comprehensive treatment of types of faults, see the
IEEE Standard Classification for Software Anomalies (IEEE, 1993). (A software anomaly is
defined in that document as
“a departure from the expected,” which is pretty close to our definition.) The IEEE standard
defines a detailed anomaly resolution process built around four phases (another life cycle):
recognition, investigation, action, and disposition.

Fault Types:

Input/Output Faults
ICorrect input not accepted
Incorrect input accepted
Output Wrong format
Wrong result
Cosmetic
Logic Faults
Missing case(s)
Duplicate case(s)
Extreme condition neglected
Wrong operator (e.g., < instead of ≤)
Computation Faults
Incorrect algorithm
Missing computation
Incorrect operand
Incorrect operation
Interface Faults
Incorrect interrupt handling
I/O timing
Call to wrong procedure
Call to nonexistent procedure
Parameter mismatch (type, number)
Incompatible types
Superfluous inclusion
Data Faults
Incorrect initialization
Incorrect storage/access
Wrong flag/index value
Incorrect packing/unpacking
Wrong variable used

6 Compare specification, program development and testing phases with help of Venn
Diagram

 Functional testing uses only the specifications to identify test cases.
 Structural testing uses the program source code as the basis of test case identification.
 Neither approach alone is sufficient.
 Consider program behaviors: if all specified have not been implemented, structural test

cases will never be able to recognize this.
 Program implements behaviors that have not been specified, this will never be revealed

by functional test cases.
 Both the approaches are needed to provide the confidence. Here, Problems can be

recognized and resolved. The Venn diagram provides final insight.

7. Test case Generation

 A TEST CASE is a documented set of preconditions (prerequisites), procedures (inputs /
actions) and postconditions (expected results) which a tester uses to determine whether a
system under test satisfies requirements or works correctly. A test case can have one or
multiple test scripts and a collection of test cases is called a test suite.

Test Suite ID TS001

Test Case ID TC001

Test Case
Summary To verify that clicking the Generate Coin button generates coins.

Related
Requirement RS001

Prerequisites 1. User is authorized.
2. Coin balance is available.

Test Script /
Procedure

1. Select the coin denomination in the Denomination field.
2. Enter the number of coins in the Quantity field.
3. Click Generate Coin.

Test Data 1. Denominations: 0.05, 0.10, 0.25, 0.50, 1, 2, 5
2. Quantities: 0, 1, 5, 10, 20

Expected
Result

1. Coin of the specified denomination should be produced if the specified
Quantity is valid (1, 5)

2. A message ‘Please enter a valid quantity between 1 and 10’ should be
displayed if the specified quantity is invalid.

8. Testing Debugging Cycle

1. Preparing Test Plan
2. Constructing Test Data
3. Executing Program
4. Specifying program behavior
5. Accessing Correctness of the Program
6. Construction of Oracles

Actual Result
1. If the specified quantity is valid, the result is as expected.
2. If the specified quantity is invalid, nothing happens; the expected

message is not displayed

Status Fail

Remarks This is a sample test case.

Created By John Doe

Date of
Creation 01/14/2020

Executed By Jane Roe

Date of
Execution 02/16/2020

Test
Environment

• OS: Windows Y
• Browser: Chrome N

	1 a. SOFTWARE QUALITY
	Quality Attributes
	Static quality attributes
	Dynamic quality Attributes:
	Reliability:
	Correctness:
	Completeness:
	Consistency:
	Usability:
	Performance:
	Reliability:
	Defect Life Cycle States:

