

Internal Assesment Test - II

Sub:	Electric Circuit Analysis							Code:	18EE32
Date:	12/10/2019	Duration:	90 mins	Max Marks:	50	Sem:	3	Branch:	EEE
Solutions									

OBE Mar CO R ks В Τ

[10]|CO3|L4 Use superposition theorem to find I_x of the network shown in fig1. short circuit (1) Consider 4P,

KVL for Loop 2

$$2i_2 + 3(i_2 - i_1) + 1(i_2 - i_3) = 5 i_0$$

$$-3i_1+6i_2-i_3=5i_0-0.$$

$$-12 + 6i2 - 4 + i0 = 5i0$$


```
KVL for Loop 1
 2i, +3i, +1(i_1-i_2) = 5i0.
  6 E1 - iq = 5 io
  6i, + io = 5 io
    6i, -4 io =0 -0
RVL for loop 2.
 1 (12-1,)+ 5/2 + 4/2 = 20 - 5/0.
1012 -1, = 20 -5 io.
1,2 = - io
  - 10 io - i, = 20 - 5 io
 -1, +5 io = 20 . _2.
 10 = - 3.53 A. O = 61, -410 = 0.
               (2) \times 6 = )-6i, -30i0 = 120
   (iii) Algebraic Sum.
 Using 4A.

Jio' $512 Jio"

3.06A - 3.53A.
  10=10 + 10"
     = 3.06 - 3.53
  10 = -0.47 A ..
```


Obtain the condition for an alternating voltage source to transfer maximum power to the load when the load impedance is the complex conjugate of the source impedance.

$$\mathfrak{T}_{L} = \frac{\mathsf{V} + \mathsf{h}}{\mathsf{Z} + \mathsf{h} + \mathsf{Z}_{L}} = \frac{\mathsf{V} + \mathsf{h}}{(\mathsf{R} + \mathsf{h} + \mathsf{j} \times \mathsf{h}) + (\mathsf{R}_{L} + \mathsf{j} \times \mathsf{L})}$$

$$IL = \frac{V+h}{(R+h+RL)+j(X+h+XL)}$$

0 (V) - 2 ((RHINERL)) +2) (XHH+XL)) = 0

$$\frac{dP_L}{dRL} = 0; \quad \chi_L = -\chi_{th}$$

$$\frac{dP_L}{dRL} = 0; \quad \chi_L = -\chi_{th}$$

$$\frac{dP_L}{dRL} = V_{th}^2 \frac{(R_{th} + R_L)^2}{2(R_{th} + R_L)^2}$$

$$\frac{dP_L}{dR_L} = V_{th}^2 \frac{(R_{th} + R_L)^2}{2(R_{th} + R_L)^2}$$

$$\frac{dP_L}{dR_L} = V_{th}^2 \frac{(R_{th} + R_L)^2}{2(R_{th} + R_L)^2}$$

$$\frac{dP_L}{dR_L} = V_{th}^2 \frac{(R_{th} + R_L)^2}{2(R_{th} + R_L)^2}$$

Power will be transformed from source load in Ac circuits, when load ningeday is complex conjugate of Thevenin's mijedance

Millman's Theorem

- * It is otherwise called as "Parallel Generator Theorem"
- * This is combination of Norton's theorem and Thereni Theren.

- * V, , V2, V3 are vortages of 1st, 2nd 4 3rd branch
- * R1, R2, R3 are respective resistances.
- * IL, RL, VT -> Load curent, load resistance and Tenninal voltage
- + This can be converted into single voltage some and resistance

Where VEE = Equivalent Voltage => Therenin's voltage

VE. = Equivalent Voltage => Therenin's V

$$\frac{V_1}{R_1} = \frac{V_1}{R_2} + \frac{V_2}{R_2} + \frac{V_3}{R_3} = \frac{V_1}{E_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{V_1}{E_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Rth => The vonin's resistance
$$RE = \frac{1}{R_1 + \frac{1}{R_2} + \frac{1}{R_3}}$$

Load Cument IL = N+16
R#+RL

Teininal Voltage VT = ILRL

6b. Determine the current I by applying Millman's theorem shown in fig(6b).

$$R_{E} = \frac{1}{\frac{1}{R_{1}}} + \frac{1}{\frac{1}{R_{2}}} + \frac{1}{R_{3}} = \frac{1}{\frac{1}{5}} + \frac{1}{4} = \frac{1}{0.2 + 0.167 + 1}$$

$$VE = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} = \frac{20}{5} + \frac{40}{5} - \frac{40}{7}$$

$$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$$

$$V = 13.24 V$$

$$I_2 = \frac{13.24}{1.6.2 + 2} = 3.66p$$