

 \bullet

ü

Id AC Voltage controller with RL load: Tr practice most of the load are inductive In practice mon y controller with RI load à shown in the below figure.
às shown in the below figure. $\frac{1}{T_{12}}$ YS the load current. Due to inductance in carries the load current. Due to inductance
the load chacult, the thypister T, would not fa
zero at wit= π , envited continues to conduct
zero at wit= π , envited to zero at wit= β . zero at $\omega t = \pi$, envited continues $\omega t = \beta$.
Enductor current palls to zero at $\omega t = \beta$. $\begin{array}{lllll} x \rightarrow 0 & x \rightarrow 0 & y \rightarrow 0 & y \rightarrow 0 & x \rightarrow 0 & x$ 25 $S = \beta - \alpha$
B - 25 termed as extinction angle.

$$
v_{0}
$$
\n
$$
v_{0}
$$

¥

Į

 $v_{0_{RMS}}^2 = \frac{v_m^2}{2\pi}$ $\left(\omega t - \frac{\sin 2\omega t}{2}\right)^{\beta}$ $=\frac{Vm}{2\pi}$ $\beta-\alpha-\frac{3m}{2}\beta+\frac{3m}{2}\alpha$ = $\frac{\sqrt{m^2}}{2\pi}$ $\left[\begin{array}{cc} \beta-\alpha + \frac{\beta^2 n \cdot 2\alpha}{2} - \frac{\beta^2 n \cdot 2\beta}{2} \end{array}\right]$ = V_{m} $\left[\frac{1}{2\pi}\left(\beta^{-\alpha+\frac{\omega^{2}n^{2}}{2}}-\frac{\omega^{2}n^{2}\beta}{2}\right)\right]$ **YORMS**

cashert :-THE REAS Velod

 $\frac{1}{2}$ of $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$
\int \frac{\sqrt{m}}{\sqrt{2}} dx
$$
\n
$$
\int \frac{(\pi - x) + \sin 2x}{\pi}
$$

 6.5 A 10 full-wave as voltage controller has $R_L = 5.2$ and the "IP voltage is 120 v (sms), bottz. The delay angles of T_1 and T_2 are equal $\alpha_1 = \alpha_2 = \frac{2T}{3}$. Calculate a) the sime of pvolitage c) the average current of thymister IT
d) any current of thymister. current $d = 120^\circ$ a) $V_{D_{p}} = V_{m} \sqrt{\frac{(\pi - \alpha) + \frac{\kappa_{n}^{2} n 2\alpha}{2}}{2\pi}}$ $= 2.094$ = $\sqrt{2} \times 120$ $\sqrt{\left(\pi - 2.094\right)} + \frac{\kappa_{10}^2}{2}$ $2\overline{1}$

$$
V_{0,nms} = 53.07
$$

$$
b) \text{Input } PF =
$$

$$
t PF = \sqrt{(T-x) + \frac{\sin 2x}{2}}
$$

= $\sqrt{(T-2.094) + \frac{\sin 240}{2}}$

$$
= 0.4423 (lag)
$$

c)
$$
T_T = \frac{V_m}{2\pi R} (1 + \cos \alpha)
$$

$$
=\frac{\sqrt{2} \times 120}{2 \pi \times 5}
$$
 (1+cos 120)

$$
= 2.7 A
$$

$$
\frac{79707}{27775}
$$
\n
$$
= 7.506 A
$$
\n
$$
= 7.506 A
$$
\n
$$
= 7.506 A
$$

$$
d) \qquad \text{I}_{\text{T nm}} = \frac{1}{2}
$$

$$
Q
$$
 Repeat above prob with $V_S = 200Y$, $\alpha = \pi/2$

$$
V_0(\text{arm}) = 141.38Y
$$

PF = 0.707
IF (avg) = 4.5A
Tr(rmt) =

Single-phase Dual Converters $\left(6\right)$ Single-phase sual converters with inductive loads Single phase que
two-quadrant operation is possible. two-quadrant operation is possible
* If there two converters are connected back to If there two convenients and current can be
back then both voltage and current can be back then both voltage and current can possible.
Revened i.e four-quadrant operation is possible. revened de pour-quance

 $x_1 - \frac{q_{i}^{2} \pi i q_{i}}{q_{i}^{2}}$ angle of conventer 2 $x_1 - \frac{4^{\circ} n \cdot 9}{\circ n \cdot 9}$ angle of conventer 2
 $x_2 - \frac{4^{\circ} n \cdot 9}{\circ n \cdot 9}$ angle of conventer 2 $x_1 - y_1$ angle of convenier 2
 $x_2 - y_1^2$ angle of convenier 2
 $x_3 - y_1^2$ and x_4 are average of convenier!
 x_4 and convenier 2. vd, and vdcs - avenue
and converters.
The fining angles are adjusted in such a we
that one conventer acts as rectifier and the
that one conventer operates as an inverter hat one conventer acts as an inverter

 \mathcal{L} $Vdc_1 = \frac{2Vm}{\pi} \cos \alpha_1$ and $Vdc_2 = \frac{2Vm}{\pi} \cos \alpha_2$ Since one converter is sectifying and the other one is inverting, $Vdc_1 = -Vdc_2$ $\frac{ay_{m}}{\pi} \cos \alpha_{1} = -\frac{ay_{m}}{\pi} \cos \alpha_{2}$ $cos \alpha_1 = -cos \alpha_2$ = \bullet cos ($\pi - \alpha_2$) $i.e$ $\alpha_1 = \pi - \alpha_2$ $\alpha_2 = \pi - \alpha_1$ $B_{\text{co-}z}$ of digference in the instantaneous opp valtages
 $B_{\text{co-}z}$ of digference in the instantaneous opp valtages Bcoz of difference in the inviction ous of convention and cons, circulating current ficting reactor or
two converters - therefore current limiting reactor or
inductor Let as used as shown in the figure
The dual converters are operated in two
The dual convert => Circulating current mode modes, => Circulating
=> Non-circulating current mode. Son-circulating aussent mode - only one converter fon-circulating current mode - only une coad aurent)
borates at a time (which carries the load aurent) d other converter semains in non-conducting state
ante palses are blocked.
Scanned with CamScanner

3) the seversal of load current is natural 200 and smooth procedure.
current serving is not required and also
the normal delay time of to to som is \cdot A) eliminated Dis-advantages:
1) current limiting scactor is sequired, whose
1) and cost increases with inorearing
figh power applications ize and corrections.
Ign power applications .
Thyrniclass with chigh current should shandle
required as well as chaulating current .
Load as well as chaulating current .
I with circulating current . rize and come
high power applications. required as vince
load as well as chaulating current ? and PF are
3) With circulating current ? and PF are

low.

= $16.97 + 9$ => 85.97 A.

2 10 circulating dual converter is fed by 230V. exupply. The load is resistive. The peak curre converter 1 is $39.74 \cdot \alpha_1 = 45$ and $\alpha_2 = 135$. of pean conculating current in 11.54. Find
1) inductance of current limiting reactor ii) load suristance. $f = 50Hz$, $V_{rms} = 230V$. Con 1 peag current $39.7.4$. $\alpha_1 = 45$, $\alpha_2 = 135$. ℓ_{λ} max = 11.54 . $trick. T can 4 peag current = $I_p + I_{A(max)}$$ $E_{\rm p}$ (peak load current) = $cos 4$ peak current -1 $39.7 - 11.5$ => 28.2

$$
T_{p} \Rightarrow 28.2 \Rightarrow \frac{V_{m}}{R}
$$
\n
$$
R \Rightarrow \frac{V_{m}}{I_{p}} \Rightarrow \frac{V_{2x}230}{28.2} \Rightarrow 11.53.4
$$
\n
$$
\Rightarrow 3.2
$$

$$
\int_{0}^{\pi} \tan \alpha x = \frac{8 \sqrt{m}}{\omega L \tau} \left[1 - \cos \alpha t \right]
$$

$$
\tau = \frac{2Vm}{\omega \tan \alpha} \left[1 - \frac{\cos 45}{100} \right]
$$

= $\frac{2 \times \sqrt{2 \times 230}}{\sqrt{2 \times 230}} \left(0.2928\right) \Rightarrow 52.73 \text{ mH}$

\n
$$
\begin{array}{c}\n 0 & \text{For the given } \text{chopper } \text{ck} \\
\text{cal} & \text{the main in which } \text{factor} \\
0 & \text{the final } \text{in } \text{the other } \\
0 & \text{the final } \text{in } \text{the other } \\
0 & \text{the final } \text{in } \text{the other } \\
0 & \text{the final } \text{in } \\
0 & \text{the final } \\
0 &
$$

For star-connected load, the ophase voltages can 5. tor viole
drawn as shown below traver as shown solow.
There are three modes during first shalf cycle (180). Mode 4: $0 - 60$ $\frac{119}{c}$

 vsT

 $Req = R + \frac{R}{2} = \frac{3R}{2}$ $t_1 = \frac{v_3}{Req} = \frac{2v_3}{3R}$ $Var = \frac{1}{2}$ $\Rightarrow \frac{2NSR}{3R} \Rightarrow \frac{NSR}{3R}$

conducting derices,

 $\frac{\zeta}{\zeta}$

 $=\frac{\sqrt{5}}{2}$. $Vbn = -i_1R \rightarrow \frac{2\sqrt{5}}{3R} \pi R \Rightarrow -\frac{2\sqrt{5}}{3}$ $Vbn = 3R$
 $Mode 2: 60 - 180 - 2 = 20
\n
$$
r_{2} = 2R
$$$ 2: $\frac{60-180}{k} - \frac{60-180}{k}$
 $\frac{8}{12/2}$
 $\frac{12/2}{k}$
 $\frac{12/2}{k}$
 $\frac{12/2}{k}$
 $\frac{12}{k}$
 $V_{bn} = V_{cn} = -\frac{i_2}{r}R \implies -\frac{V_S}{3}$

* In voitage source enverters voit , ip voitag In voitage source inventors
is maintained const and the amplitude of opp valtage doesnot
but nature and magnitude of load cuirent depends en load impedance. depends en load impedance.
* In current source inverters CSIS, ipp current
* In current source inverters cSIS, ipp current In current source inventers (525, 11)
is const but adjustable and the amplitude of
opp current is independent of load. i.e the ofp aussent is Endependent of coale. "I
magnitude of e/p voltage is dependent on load impedance. 10 CSI using Transiston m Le \cdot Q 3 α_1 , Di ce : \mathcal{D}_{m} LOAD \sqrt{S} α

 \mathcal{D}

When the switch is on you time period to, \star the inductor current rises and energy is stored in the inductor the induction
when the switch is OFF for time period to,

the energy stored in the inductor is transferred
to load thro D1 and the current galls. × to load

When
$$
k=0
$$
, $U_0 = 8$

\n $k=0.5$, $U_0 = 20$

\n $k=1$, $U_0 = \infty$ (which \vec{n} not partially
the equivalent cuts for model 4 (such on)

\nand 2 (swith off) is shown below

\nand 4

\nand 4

\nand 4

\nand the original problem of \vec{n} is given by \vec{n} and the following problem of \vec{n} is given by \vec{n} and the following formula for \vec{n} and \vec{n} is not a given by \vec{n} and \vec{n} and \vec{n} is not a given by \vec{n} and \vec{n} and \vec{n} are not a linearly independent.

\n \vec{n} is not a linearly independent.

 $\frac{1}{1}$ + Deving the half-cycle of $^{\circ}/P$, τ , and τ_2 are pering biared and when they are fixed forward biarred and war ring
Fimultaneously at wit = a, load gets connected to the source and follows the supply voltage. * T, and T2 continue to conduct beyond wt=1 T, and 12 commune 20 concernent en 11p voitage \int_{0}^{∞} -ve. is re.
5 Sémidarly, during re half-cycle, To and T4 comes
* Sémidarly, ti is T1 and 72 will be turned Similarly, during -re half-cycle, is and
into conduction i.e T, and 72 will be turned into conduction i.e T1 and 2 commutation into conduction is natural commutation
off due to time on natural commutation
* Single - phase full converter with inductive load Single - phase full convenue $(N_1^n n)_n$ VS. $\frac{1}{2}$ $\pi + \frac{1}{2}$ 3ff 3π to. 3π $\overline{\mathcal{H}}$ $2_π$

$$
\Rightarrow \text{ depending on the value of } \alpha, \text{ the value of } \alpha \text{ and } \text{ the
$$

 $= \cos \alpha$