

Internal Assesment Test - III

Sub:	SIGNALS AND SYSTEMS Code							e:	17EE54		
Date:	19/11/2019	Duration:	90 mins	Max Marks:	50	Sem:	5th	Bran	ch:	EEE	
		A	nswer An	y FIVE FULL (Question	s					
									Marks	OBE	
							Warks	CO	RBT		
c	Solve the following dif- conditions. y(n)-(1/9) y(n-2) = x(n-2)	•	•			the spec	cified i	nitial	10	CO6	L2
2 I	Prove the linearity and frequency shift property of Fourier Transform								10	CO5	L1
	Obtain the Fourier transport a : $a > 0$		•	u(t) $c)x(t)=$	2 t ² +1				10	CO5	L2
4 I	Find the frequency response and the impulse response of the system described by the difference equation $y(n) + \frac{1}{2}y(n-1) = x(n) - 2x(n-1)$									CO5	L2
	Compute DTFT for the				b) a ⁿ				10	CO5	L2
6 I	Prove the summation and Parsevals theorem property of DTFT								10	CO5	L1
	Determine $x[n]$ if $X(z)$ (i) $ z < \frac{1}{2}$ (ii) $ z > 2$ (iii)		$-z^{-1}+z^{-2}$ $(1-2z^{-1})$	$\frac{1}{(1-z^{-1})} \text{ for } t$	he follo	wing		ROCs	10	CO6	L2

1. Given;
$$y(n) - \frac{1}{9}y(n-2) = x(n-1)$$

Taking unilateral Z-transform on both the sides, we get,

$$Y(z) - \frac{1}{9}[y(-2) + y(-1)z^{-1} + z^{-2}Y(z)] = x(-1) + z^{-1}X(z)$$
Substitute $y(-2) = 1$; $y(-1) = 0$ and $x(-1) = 0$

$$Y(z) - \frac{1}{9}[1 + z^{-2}Y(z)] = z^{-1}X(z)$$

$$Y(z) [1 - \frac{1}{9}z^{-2}] = \frac{1}{9} + \frac{3z^{-1}}{1-z^{-1}} \qquad [\because X(z) = \frac{3}{1-z^{-1}}]$$

$$= \frac{(1-z^{-1} + 27z^{-1})}{9(1-z^{-1})}$$

$$= \frac{\frac{1}{9}(1 + 26z^{-1})}{(1-\frac{1}{9}z^{-2})(1-z^{-1})}$$

$$= \frac{\frac{1}{9}(1 + 26z^{-1})}{(1-\frac{1}{3}z^{-1})(1+\frac{1}{3}z^{-1})(1-z^{-1})}$$

 $Y(z) = \frac{-79/36}{1 - \frac{1}{3}z^{-1}} + \frac{-77/72}{1 + \frac{1}{3}z^{-1}} + \frac{27/8}{1 - z^{-1}}$

By partial fraction expansion, we get,

Taking inverse Z-transform, we get,

$$y(n) = -\frac{79}{36} (\frac{1}{3})^n u(n) - \frac{77}{72} (-\frac{1}{3})^n u(n) + \frac{27}{8} u(n)$$

$$y(n) = \left[\frac{-79}{36} (\frac{1}{3})^n - \frac{77}{72} (-\frac{1}{3})^n + \frac{27}{8}\right] u(n)$$

3.

4.

then
$$z(t) = ax(t) + by(t) \xleftarrow{FT} Z(j\omega) = a X(j\omega) + b Y(j\omega)$$

Proof: We have $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega x} dt$

$$Y(j\omega) = \int_{-\infty}^{\infty} y(t) e^{-j\omega x} dt$$

$$\therefore Z(j\omega) = \int_{-\infty}^{\infty} z(t) e^{-j\omega x} dt$$

$$= \int_{-\infty}^{\infty} [ax(t) + by(t)] e^{-j\omega x} dt$$

$$= a \int_{-\infty}^{\infty} x(t) e^{-j\omega x} + b \int_{-\infty}^{\infty} y(t) e^{-j\omega x}$$

$$Z(j\omega) = a X(j\omega) + b Y(j\omega)$$

Hence the proof.

(c) Frequency shift :

If
$$x(t) \xleftarrow{FT} X(j\omega)$$

then $y(t) = e^{j\beta t} x(t) \xleftarrow{FT} Y(j\omega) = X(j(\omega-\beta))$
Proof: We have,

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$\therefore Y(j\omega) = \int_{-\infty}^{\infty} y(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} e^{i\beta t} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} x(t) e^{-i(\omega - \beta)t} dt$$

$$\therefore Y(j\omega) = X(j(\omega - \beta))$$

Hence the proof.

where: Given,
$$x(t) = \sin(\pi t) e^{-it} u(t)$$

$$= \left[\frac{e^{ju} - e^{-ju}}{2j} \right] e^{-it} u(t)$$

$$= \frac{e^{-it} \cdot e^{itt} u(t)}{2j} - \frac{e^{-it} \cdot e^{-ju} u(t)}{2j}$$
We know that,
$$e^{-it} u(t) \xleftarrow{\text{FT}} \frac{1}{2+ji0}$$

Using frequency shifting property, we get,

$$e^{jw} e^{-2s} u(t) \leftarrow \stackrel{FT}{\longrightarrow} \frac{1}{2+j(\omega-\pi)}$$

Using Linearity property, we get,

$$\frac{1}{2j} \ e^{j\alpha} \ e^{-2i} \ u(t) \longleftarrow \xrightarrow{\operatorname{FT}} \frac{1}{2j} \cdot \frac{1}{2+j(\varpi - \pi)}$$

$$\frac{1}{2j} e^{-j\pi} e^{-j\pi} \mathbf{u}(t) \xleftarrow{\text{FT}} \frac{1}{2j} \cdot \frac{1}{2+j(\omega+\pi)}$$

$$\therefore \mathbf{x}(t) = \sin(\pi t) e^{-j\pi} \mathbf{u}(t) \xleftarrow{\text{FT}} \frac{1}{j2} \left[\frac{1}{2+j(\omega+\pi)} - \frac{1}{2+j(\omega+\pi)} \right]$$

$$\therefore \mathbf{x}(j\omega) = \frac{1}{i2} \left[\frac{1}{2+j(\omega-\pi)} \cdot \frac{1}{2+j(\omega+\pi)} \right]$$

$$a)x(t)=e^{-a|t|}$$
; $a>0$ $b)x(t)=\sin(\pi t) e^{-2t}u(t)$ $c)x(t)=\frac{2}{t^2+1}$

$$X(j\omega) = \int_{-\infty}^{\infty} e^{-a|x|} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t} dt + \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$

$$= \frac{1}{a-j\omega} + \frac{1}{a+j\omega}$$

$$Y(i\omega) = -\frac{2a}{a-j\omega}$$

From the duality property of FT, we have

if
$$x(t) \xleftarrow{\text{FT}} X(jw)$$
, the $X(jt) \xleftarrow{\text{FT}} 2\pi x(-w)$

$$e^{-a+t} \leftarrow \xrightarrow{\pi\pi} \frac{2a}{a^2 + m^2}$$

$$x(t) = e^{-|t|} \xleftarrow{r\tau} \frac{2}{1 + vv^2} = X(jw)$$

Using duality property, the above in modified as

$$X(|t| = \frac{2}{t^2 + 1} \longleftrightarrow 2\pi x(-w) = 2\pi e^{-1-wt} = 2\pi e^{-|w|}$$

Hence the FT of
$$\frac{2}{t^2+1}$$
 is $2\pi e^{-i\pi t}$

Given; $y(n) + \frac{1}{2}y(n-1) = x(n) - 2x(n-1)$

Taking DTFT on both side, we get,

$$Y(e^{j\Omega}) + \frac{1}{2} e^{-j\Omega} Y(e^{j\Omega}) = X(e^{j\Omega}) - 2e^{-j\Omega} X(e^{j\Omega})$$

.. The frequency respo

H(e^{jΩ}) =
$$\frac{Y(e^{j\Omega})}{X(e^{j\Omega})} = \frac{1 - 2e^{-j\Omega}}{1 + \frac{1}{2} e^{-j\Omega}}$$

H(e^{jΩ}) = $\frac{1}{1 + \frac{1}{2} e^{-j\Omega}} - \frac{2e^{-j\Omega}}{1 + \frac{1}{2} e^{-j\Omega}}$

Taking inverse DTFT, we get,

Taking inverse DTFT, we get,
the impulse response
$$h(n) = \left(\frac{-1}{2}\right)^n u(n) - 2 \cdot \left(\frac{-1}{2}\right)^{n-1} u(n-1)$$

$$\begin{aligned} & \text{We have,} \\ & \text{X(e^{i0})} = \sum_{n=-\infty}^{\infty} x(n) \, e^{ij0n} \\ & \text{X(e^{i0})} = \sum_{n=-\infty}^{\infty} x(n) \, e^{ij0n} \\ & \text{X(e^{i0})} = \sum_{n=-\infty}^{\infty} 2^n \, e^{ij0n} \\ & = \sum_{n=-\infty}^{\infty} a^{|n|} \, e^{-ji0n} \\ & = \sum_{n=-\infty}^{\infty} 2^{-n} \, e^{ij0n} \\ & = \sum_{m=0}^{\infty} 2^{-n} \, e^{ij0n} \\ & = \sum_{m=0}^{\infty} 2^{-n} \, e^{ij0n} \\ & = \sum_{n=-\infty}^{\infty} (2^{-i} \, e^{ij0})^n \\ & = \sum_{n=1}^{\infty} (2^{-i} \, e^{ij0})^n \\ & = \sum_{n=0}^{\infty} (2^{-i} \, e^{ij0})^n \\ & = \sum_{n=0}^{\infty} (a \, e^{ij0})^n + \sum_{n=0}^{\infty} (a \, e^{-ji0})^n \\ & = \sum_{n=0}^{\infty} (a \, e^{ij0})^n + \sum_{n=0}^{\infty} (a \, e^{-ji0})^n \\ & = \sum_{n=0}^{\infty} (a^{-ij0})^n + \sum_{n=0}^{\infty} (a^{-ij0})^n \\ & = \sum_{n=0}^{\infty} (a^{-ij0})^n + \sum_{n=0$$

6.

(f) Summation :

$$y(n) = \sum_{k=-\infty}^{n} x(k) \xleftarrow{DTFT} Y(e^{j\Omega}) = \frac{X(e^{j\Omega})}{1 - e^{-j\Omega}} + \pi X(e^{j\sigma}) \sum_{k=-\infty}^{\infty} \delta(\Omega - k 2\pi)$$

Proof: We know that summation is the reverse process of differencing. The summation operation on x(n) yields y(n) whereas the difference operation on y(n) yields x(n).

i.e.
$$x(n) = y(n) - y(n-1)$$

Taking DTFT on both the sides, we get,

$$X(e^{i\Omega}) = Y(e^{i\Omega}) - e^{-i\Omega} Y(e^{i\Omega})$$

 $\therefore Y(e^{i\Omega}) = \frac{X(e^{i\Omega})}{1 - e^{-i\Omega}}$ (3.15)

From eqn. 3.15, we cannot determine $Y(e^{\omega})$. Therefore we add an impulse to account for a non zero average value in x(k), to get the exact relationship as,

Scanned by CamScanner

198

Signals & Systems

$$Y(\mathrm{e}^{\mathrm{i}\Omega}) = \frac{X(\mathrm{e}^{\mathrm{i}\Omega})}{1 - \mathrm{e}^{\mathrm{i}\Omega}} + \pi \, X(\mathrm{e}^{\mathrm{i}\mathrm{o}}) \, \delta(\Omega) \qquad ; -\pi < \Omega < \pi.$$

where the first term assumed to be zero for $\Omega=0$. Since $Y(e^{j\Omega})$ is periodic 2π , we have,

$$Y(e^{j\Omega}) = \frac{X(e^{j\Omega})}{1 - e^{-j\Omega}} + \pi X(e^{j\sigma}) \sum_{k=-\infty}^{\infty} \delta(\Omega - k2\pi)$$

$$X(z) = \frac{A_1}{1 - \frac{1}{2}z^{-1}} + \frac{A_2}{1 - 2z^{-1}} + \frac{A_3}{1 - z^{-1}}$$

$$A_1 = \frac{1 - z^{-1} + z^{-2}}{\left(1 - \frac{1}{2}z^{-1}\right)(1 - 2z^{-1})(1 - z^{-1})} \times \left(1 - \frac{1}{2}z^{-1}\right)$$

$$= 1$$

$$A_{2} = \frac{1 - z^{-1} + z^{-2}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - 2z^{-1}\right)\left(1 - z^{-1}\right)} \times \left(1 - 2z^{-1}\right)$$

$$= 2$$

$$A_{3} = \frac{1 - z^{-1} + z^{-2}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - 2z^{-1}\right)\left(1 - z^{-1}\right)} \times \left(1 - z^{-1}\right)$$

$$= -2$$

$$X(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 2z^{-1}} - \frac{2}{1 - z^{-1}}$$
bles are at $z = \frac{1}{2}$, 2 and 1.

(i) ROC:
$$|z| < \frac{1}{2}$$

The radius of ROC is less than all the poles. So all terms are left-sided goals. Using (8.41)

$$x[n] = -\left(\frac{1}{2}\right)^n u[-n-1] - 2[2]^n u[-n-1] + 2u[-n-1]$$

The radius of ROC is greater than all the poles. So all are right-sided inverse transforms. Using (8.40)

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + 2(2)^n u[n] - 2u[n]$$

(iii) ROC: 1 < |z| < 2

The terms corresponding to $d_1 = \frac{1}{2}$ and 1 are right sided and $d_4 = 2$ is left

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - 2u[n] - 2(2)^n u[-n-1]$$