

17ME563 Automation and Robotics- Jan 2020

Answer Key
Q.N Solution
0
1.a) | Automation is the technology by which a process or procedure is accomplished without

human assistance. It is implemented using a program of instructions combined with a
control system that executes the instructions.

Basic elements of an automated system

An automated system consists of three basic elements:
(1) power to accomplish the process and operate the system.
(2) a program of instructions to direct the process, and
(3) a control system to actuate the instructions.

Power
7 . |
(2) (3] ¥
o y —-
_I rogram of . Control Process
instructions system -

Figure 4.2 Elements of an automated system: (1) power,
(2) program of instructions, and (3) control systems.

Fig.1 Basic elements of an automated system

1. Power to accomplish the automated process

An automated system is used to operate some process, and power is required to drive the
process as well as the controls. The principal source of power in automated systems is
electricity. Electric power has many advantages in automated as well as non-automated
processes.

In addition to driving the manufacturing process itself, power is also required for the
following material handling functions:

« Loading and unloading the work unit. All of the processes listed in Table 4.1 are
accomplished on discrete parts. These parts must be moved into the proper position and
orientation for the process to be performed, and power is required for this transport and
placement function. At the conclusion of the process, the work unit must be removed. If
the process is completely automated, then some form of mechanized power is used. If the
process is manually operated or semi automated, then human power may be used to
position and locate the work unit.

 Material transport between operations. In addition to loading and unloading at a
given operation, the work units must be moved between operations.

Power for Automation.

Above and beyond the basic power requirements for the manufacturing operation,
additional power is required for automation. The additional power is used for the
following functions:

« Controller unit. Modern industrial controllers are based on digital computers,
which require electrical power to read the program of instructions, perform the control
calculations, and execute the instructions by transmitting the proper commands to
actuating devices.

» Power to actuate the control signals. The commands sent by the controller unit
are carried out by means of electromechanical devices, such as switches and motors,
called actuators The commands are generally transmitted by means of low-voltage
control signals. To accomplish the commands, the actuators require more power, and so
the control signals must be amplified to provide the proper power level for the actuating
device.

» Data acquisition and information processing. In most control systems, data must
be collected from the process and used as input to the control algorithms. In addition, for
some processes, it is a legal requirement that records be kept of process performance
and/or product quality. These data acquisition and record-keeping functions require
power, although in modest amounts.

2. Program of instructions

The actions performed by an automated process are defined by a program of instructions.
Whether the manufacturing operation involves low, medium, or high production, each
part or product requires one or more processing steps that are unique to that part or
product. These processing steps are performed during a work cycle. A new part is
completed at the end of each work cycle (in some manufacturing operations, more than
one part is produced during the work cycle: for example, a plastic injection molding
operation may produce multiple parts each cycle using a multiple cavity mold). The
particular processing steps for the work cycle are specified in a work cycle program,
called part programs in numerical control.

3. Control System

The control element of the automated system executes the program of instructions. The
control system causes the process to accomplish its defined function, which is to perform
some manufacturing operation.

The controls in an automated system can be either closed loop or open loop. A closedloop
control system, also known as a feedback control system, is one in which the output
variable is compared with an input parameter, and any difference between the two is used
to drive the output into agreement with the input.

1.b)

Advanced automation functions

Advanced automation functions include the following:
(1) safety monitoring,
(2) maintenance and repair diagnostics, and
(3) error detection and recovery.

Safety Monitoring
Safety monitoring in an automated system involves the use of sensors to track the
system’s operation and identify conditions and events that are unsafe or potentially
unsafe. The safety monitoring system is programmed to respond to unsafe conditions in
some appropriate way. Possible responses to various hazards include one or more of the
following:

(1) completely stopping the automated system,

(2) sounding an alarm,

(3) reducing the operating speed of the process, and

(4) taking corrective actions to recover from the safety violation
The following list suggests some of the possible sensors and their applications for safety
monitoring:

v' Limit switches to detect proper positioning of a part in a workholding device so
that the processing cycle can begin.

v Photoelectric sensors triggered by the interruption of a light beam; this could be
used to indicate that a part is in the proper position or to detect the presence of a
human intruder in the work cell.

v/ Temperature sensors to indicate that a metal work part is hot enough to proceed
with a hot forging operation. If the work part is not sufficiently heated, then the
metal’s ductility might be too low, and the forging dies might be damaged during
the operation.

Heat or smoke detectors to sense fire hazards.

Pressure-sensitive floor pads to detect human intruders in the work cell.

Machine vision systems to perform surveillance of the automated system and its
surroundings.

ANENEN

Maintenance and Repair diagnostics
Three modes of operation are typical of a modern maintenance and repair diagnostics
subsystem:

1. Status monitoring. In the status monitoring mode, the diagnostic subsystem
monitors and records the status of key sensors and parameters of the system during
normal operation. On request, the diagnostics subsystem can display any of these values
and provide an interpretation of current system status, perhaps warning of an imminent
failure.

2. Failure diagnostics. The failure diagnostics mode is invoked when a
malfunction or failure occurs. Its purpose is to interpret the current values of the
monitored variables and to analyze the recorded values preceding the failure so that its
cause can be identified.

3. Recommendation of repair procedure. In the third mode of operation, the
subsystem recommends to the repair crew the steps that should be taken to effect repairs.
Methods for developing the recommendations are sometimes based on the use of expert
systems in which the collective judgments of many repair experts are pooled and
incorporated into a computer program that uses artificial intelligence techniques.

Error detection and recovery
Error Detection. The error detection step uses the automated system’s available

sensors to determine when a deviation or malfunction has occurred, interpret the sensor
signal(s), and classify the error. Design of the error detection subsystem must begin with
a systematic enumeration of all possible errors that can occur during system operation.
The errors in a manufacturing process tend to be very application-specific. They must be
anticipated in advance in order to select sensors that will enable their detection.

Error Recovery. Error recovery is concerned with applying the necessary
corrective action to overcome the error and bring the system back to normal operation.
The problem of designing an error recovery system focuses on devising appropriate
strategies and procedures that will either correct or compensate for the errors that can
occur in the process.

23-) TABLE 5.2 Comparison Between Continuous Control and Discrete Control
Comparison Factor Continuous Control in Process Discrete Control in Discrete
Industries Manufacturing Industries
Typical measures of Weight measures, liquid Number of parts, number of produs
product output volume measures, solid volume
measures
Typical quality measures Consistency, concentration of Dimensions, surface finish, appear-
solution, absence of contaminants, ance, absence of defects, produc
conformance to specification reliability
Typical variables and Temperature, volume flow rate, Position, velocity, acceleration, forc
parameters pressure
Typical sensors Flow meters, thermocouples, Limit switches, photoelectric senso
pressure Sensors strain gages, piezoelectric sensor
Typical actuators Valves, heaters, pumps Switches, motors, pistons
Typical process time Seconds, minutes, hours Less than a second
constants
2.b) | Sensor is a transducer, which is a device that converts a physical variable of one form

into another form that is more useful for the given application. In particular, a sensor is a
device that converts a physical stimulus or variable of interest (such as temperature, force,
pressure, or displacement) into a more convenient form (usually an electrical gquantity
such as voltage) for the purpose of measuring the stimulus. The conversion process
quantifies the variable, so that it can be interpreted as a numerical value.

The sensors used in robotics include a wide range of devices which can be divided into the
following general categories:

a. Tactile sensors

b. Proximity and range sensors

c. Miscellaneous sensors and sensor based systems

d. Machine vision systems

Tactile Sensors

Tactile sensors are devices which indicate contact between themselves and some other solid
object. Tactile sensing devices can be classified into two classes: Touch Sensors and Force
Sensors.

Touch sensors provide a binary output signal which indicates whether or not contact has been
made with the object.

Force sensors (Stress Sensors) indicate not only the contact has been made with the object but

also the magnitude of the contact force between the two objects.

Touch sensors

Touch sensors are used to indicate that contact has been made between two objects without
regard to the magnitude of the contacting force. Included within this category are simple
devices such as limit switches, micro-switches, and the like. The simpler devices are
frequently used in the design of interlock systems in robotics. For example, they can be used
to indicate the presence or absence of parts in a fixture or at the pick-up point along a
conveyor.

Another use for a touch sensing device would be as part of an inspection probe which is
manipulated by the robot to measure dimensions on a work part. A robot with 6 degrees of
freedom would be capable of accessing surfaces on the part that would be difficult for a
three-axis coordinate measuring machine, the inspection system normally considered for such
an inspection task. Unfortunately, the robot’s accuracy would be a limiting factor in contact
inspection work.

Force Sensors

The capacity to measure the forces permits the robot to perform a number of tasks. These
include the capability to grasp parts of different sizes in material handling, machine loading
and assembly work, applying the appropriate level of force for the given part.

Force sensing in robotics can be accomplished in several ways. A commonly used technique
is a “force sensing wrist”. This consists of a special load-cell mounted between the gripper
and the wrist. Another technique is to measure the torque being exerted by each joint. A third
technique is to form an array of force-sensing elements so that the shape and other
information about the contact surface can be determined.

2.C)

(1) Sensor and

transducer
5y ADC ’7 *
Digital (2] Signal
input to - D ﬂ * conditioning
computer *
{4) Amplifier ~-— (ither signals

(3) Multiplexer

Figure 6.9 Steps in analog-to-digital conversion of
continuous analog signals from process.

Consider the operation of the ADC, which is the heart of the conversion process. Analog-
to-digital conversion occurs in three steps: (1) sampling, (2) quantization, and (3)
encoding. Sampling consists of converting the continuous signal into a series of discrete
analog signals at periodic intervals, as shown in Figure 6.10. In quantization, each
discrete analog signal is assigned to one of a finite number of previously defined
amplitude levels. The amplitude levels are discrete values of voltage ranging over the full
scale of the ADC

In the encoding step, the discrete amplitude levels obtained during quantization are

converted into digital code, representing the amplitude level as a sequence of binary
digits.

3.2)

An automated production line consists of multiple workstations that are automated and
linked together by a work handling system that transfers parts from one station to the
next, as depicted in Figure 16.1. A raw work part enters one end of the line, and the
processing steps are performed sequentially as the part progresses forward (from left to
right in the drawing). The line may include inspection stations to perform intermediate
quality checks. Also, manual stations may be located along the line to perform certain
operations that are difficult or uneconomical to automate. Each station performs a
different operation, so all operations must be performed to complete each work unit.
Multiple parts are processed simultaneously on the line, one part at each station. In the
simplest form of production line, the number of parts on the line at any moment is equal
to the number of workstations, as in the figure. In more complicated lines, provision is
made for temporary parts storage between stations, in which case there are more parts
than stations.

Mechanized work
transport system

/ Workstation (n)

Proc Proc Proc Proc Proc Proc

Starting Aut | | Aut Aut Aut | | Aut Aut

Completed
base parts — " parts
— [{] (@] (8] (@] ;5 @] (@] 9] g —
000000 Sta Sta Sta Sta Sta Sta 000000

1 2 3 n-12 n-1 n
Work-in-process

Figure 16.1 General configuration of an automated production line. Key: Proc =
processing operation, Aut = automated workstation.

3.0)

A storage buffer is a location in the production line where parts can be collected and
temporarily stored before proceeding to downstream workstations. The storage buffers
can be manually operated or automated. When it is automated, a storage buffer consists of
a mechanism to accept parts from the upstream workstation, a place to store the parts, and
a mechanism to supply parts to the downstream station. A key parameter of a storage
buffer is its storage capacity, that is, the number of work parts it can hold. Storage buffers
may be located between every pair of adjacent stations, or between line stages containing
multiple stations.

4.3)

Automated assembly systems can be classified according to physical configuration. The
principal configurations, illustrated in Figure 17.1, are (a) in-line assembly machine, (b)
dial-type assembly machine, (c) carousel assembly system, and (d) single-station
assembly machine.

The in-line assembly machine, Figure 17.1(a), is a series of automatic
workstations located along an in-line transfer system. It is the assembly version of the
machining transfer line. Synchronous and asynchronous transfer systems are the common
means of transporting base parts from station to station with the in-line configuration.

In the typical application of the dial-type machine, Figure 17.1(b), base parts are
loaded onto fixtures or nests attached to the circular dial. Components are added and/or
joined to the base part at the various workstations located around the periphery of the
dial. The dial-indexing machine operates with a synchronous or intermittent motion, in

which the cycle consists of the service time plus indexing time. Dial-type assembly
machines are sometimes designed to use a continuous rather than intermittent motion.
This is common in beverage bottling and canning plants, but not in mechanical and
electronics assembly.

The carousel assembly system represents a hybrid between the circular work flow
of the dial-type assembly machine and the straight work flow of the in-line system. The
carousel configuration can be operated with continuous, synchronous, or asynchronous
transfer mechanisms to move the work around the carousel.

In the single-station assembly machine, Figure 17.1(d), assembly operations are
performed on a base part at a single location. The typical operating cycle involves the
placement of the base part at a stationary position in the workstation, the addition of
components to the base, and finally the removal of the completed assembly from the
station. An important application of single-station assembly is the component placement
machine, widely used in the electronics industry to populate components onto printed
circuit boards.

Components added at stations (&)

-]
Components added at stations gl

ﬁ{ ol ol al al al a &

o o o a a a a

o o e]] o ™

2 Q °]] o

o o o a o a oy
e[| [RR][A0] [RI[AR][AR] oo s 06T
base parts 23 assemblies base parts e
— O 1] 11 0]] 10 * - by leooo

—= Sta Sta Sta

e
1 2 i n-2 n-1 n 3
BN
(a) Ashy| ST
Aut 5

(-] a
Completed gr
assemblies =
(b
Components added at stations
Starting sl 3l 8 8 3l
base parts -] & -} -} & o Components added at one station
Asby | | Asby | | Asby | | Asby | | Asby a| @ e |
Aut || Aut | Auwt || Aut || Aot : : : :
[w] o] (9] el o o Jo
o o
oy P{I ()
Starting '1"’-"' Completed
hase paris nt assemblies
Complated]]]] [] @ =0l 8 Lo
memiies 3 3 B30T @

Figure 17.1 Types of automated assembly systems: (a) in-ling, (b) dial-type, (c) carousel,
and (d) single station.

4b)

Automatic identification and data capture (AIDC) refers to technologies that provide

direct entry of data into a computer or other microprocessor-controlled system without
using a keyboard.

BAR CODE TECHNOLOGY

Bar codes divide into two basic types: (1) linear, in which the encoded data are read using
a linear sweep of the scanner, and (2) two-dimensional, in which the encoded data must

be read in both directions.

3 ;_.“L “ “]| 0 IIII“IIIIIIIIIIIIII“IIIIIIIIIIIIIIIIIII“III”IIIIIIIIIIII”
{

aj by
Figure 12.1 Two forms of linear bar codes are (a) width-modulated. exempli-
fied here by the Universal Product Code, and (b) height-modulated. exemplified
here by Postnet, used by the ULS. Postal Service.
Linear (One-Dimensional) Bar Codes

Linear bar codes are the most widely used automatic identification and data
capture technique. There are actually two forms of linear bar code symbologies,
illustrated in Figure 12.1: (a) width-modulated, in which the symbol consists of bars and
spaces of varying width; and (b) height-modulated, in which the symbol consists of
evenly spaced bars of varying height. The only significant application of the height-
modulated bar code symbologies is in the U.S. Postal Service for ZIP code identification,
so the discussion here focuses on the width-modulated bar codes, which are used widely
in retailing and manufacturing.

In linear width-modulated bar code technology, the symbol consists of a sequence
of wide and narrow colored bars separated by wide and narrow spaces (the colored bars
are usually black and the spaces are white for high contrast). The pattern of bars and
spaces is coded to represent numeric or alphanumeric character.

Bar code readers interpret the code by scanning and decoding the sequence of
bars. The reader consists of the scanner and decoder. The scanner emits a beam of light
that is swept past the bar code (either manually or automatically) and senses light
reflections to distinguish between the bars and spaces. The light reflections are sensed by
a photo detector, which converts the spaces into an electrical signal and the bars into
absence of an electrical signal. The width of the bars and spaces is indicated by the
duration of the corresponding signals.

RFID

In radio frequency identification, an identification tag or label containing
electronically encoded data is attached to the subject item, which can be a part, product,
or container (e.g., carton, tote pan, pallet). The identification tag consists of an integrated
circuit chip and a small antenna, as pictured in Figure 12.8. These components are usually
enclosed in a protective plastic container or are imbedded in an adhesive-backed label
that is attached to item. The tag is designed to satisfy the Electronic Product Code (EPC)
standard, which is the RFID counterpart to the Universal Product Code (UPC) used in bar
codes. The tag communicates the encoded data by RF to a reader or interrogator as the
item is brought into the reader’s proximity. The reader can be portable or stationary. It
decodes and confirms the RF signal before transmitting the associated data to a collection

computer.

5.a)

A robot is a reprogrammable multi functional manipulator designed to move material,
parts, tools or specialized devices through variable programmed motions for the
performance of variety of tasks.

1. Polar configuration

2. Cylindrical Configuration

3. Cartesian Configuration

4. Jointed Arm configuration

o N — [l
T
[T
_ I ot e L; _‘C‘-\.\,J —
==y P
I.-.-_-_;:LE-:'-'- [r "]-FF- f.__‘_ = ___d
—— .-"/_J T
e— T ' P Sy
r__ 3 LI
0
. _f. et
[L:H H‘H}I r_ g =L '-:-.:-:]
o TR - g
.j .-‘:_..__] - "~ HM_[_‘:- L

o

H A i
. b u
- - 1 s = .\\1
- e i) /N I
L:H -~ -'"'.J -—"H—IJ-"'H "-‘I:EI

R -—

Figare LI The fore bade ranon aealmiies Jal polis, bl edindrical, fo] ceste
wared-gin. (Reprinted from Rederesce [7]0

sian, aml ()

1. Polar configuration/Spherical configuration
Notation: [LTR]: Linear, Twisting and Rotational joint

This configuration also called as Polar coordinate configuration. It goes by the
name “spherical coordinate” also because the workspace within which it can move its arm
is a partial sphere as shown in figure. The robot has a rotary base and a pivot that can be
used to raise and lower a telescoping arm.

i) Operate within a spherical work volume

ii) Has 1 prismatic and 2 revolute axes.

iii) First motion is a base rotation, Second motion correspond to an elbow rotation
and Third

motion is radial or in-out motion

iv) Elbow rotation and arm reach limit the design of full spherical motion.

V) Rarely used in industries but common in automated cranes.
2. Cylindrical Configuration

Notation: [TLL]: Twisting, Linear and Linear.

This also has 3 degrees of freedom, 2 prismatic and 1 revolute joints. It moves linearly
along X and Y axes and rotaion about at its base i.e. Z- axis. The robot body is a vertical
column that swivels about a vertical axis. The arm consists of several orthogonal slides

which allow the arm to be moved up or down and in and out with respect to the body.
This is illustrated schematically in figure.
Features:

1) Operate within a cylindrical work volume

il) 2 prismatic and 1 revolute joints.

iii) Position is specified by Y value (height) extension of arm X axis and angle of

rotation of Z axis (0)

iv) Recommended for pick and place operation such as machine loading and
unloading.

V) Lower repeatability and accuracy

vi) Require more sophisticated control

vii) Rigid structure & high lift-carrying capacity

3. Cartesian / Rectangular configuration
Notation: [LOO]: Linear, Orthogonal, Orthogonal

Cartesian configuration is also called as Rectilinear or Rectangular configuration as the
joints allow only translational or linear relative motion between the adjacent links of the
joint. A robot using such a configuration is called as X-Y-Z robot. Other names are xyz
robot or Rectilinear robot or Gantry robot. Any point in X, Y and Z coordinate system
can be reached using this configuration. By appropriate movements of these slides, the
robot is capable of moving its arm at any point within its three dimensional rectangular
spaced work space.

Features:
i) Operate within a rectangular work volume
ii) Three prismatic joints are used.
iii) The position is specified by X, Y and Z locations.
iv) Easy to visualize motion
v) Easy to program the motions
vi) Adapted in gantry crane and CNC milling machines.
vii) Gantry type can handle heavy loads.
viii) Addition axes can be incorporated to the wrist action.
ix) Difficult to protect the sliding axes from contaminants such as dust and
moisture as it is open.

4. Revolute / Articulate / Jointed-arm configuration:
Notation: [TRR]: Twisting, Rotational and Rotational joint
It is combination of cylindrical and articulated configurations. This is similar in

appearance to the human arm, as shown in fig. the arm consists of several straight
members connected by joints which are analogous to the human shoulder, elbow, and

wrist. The robot arm is mounted to a base which can be rotated to provide the robot with
the capacity to work within a quasi-spherical space.

Features:
i) Operate within a quasi-spherical work volume.
ii) All 3 are revolute joints.
iii) Can reach above, below and around obstacles.
iv) Joints can be sealed easily.
v) Difficult to calculate angular motion of the axis for a given top or end motion.

5.b)

Robot Work Volume

It is the term that refers to the space within which the robot can manipulate its
wrist end. The convention of using the wrist end to define the robot’s work volume is
adopted to avoid the complication of different sizes of end effectors that might be
attached to the robot's wrist.
Spatial resolution

The spatial resolution of a robot is the smallest increment of movement into which
the robot can divide its work volume. Spatial resolution depends on two factors: the
system’s control resolution and the robot’s mechanical inaccuracies. It is easiest to
conceptualize these factors in terms of a robot with 1 degree of freedom.
Accuracy

Accuracy refers to a robot’s ability to position its wrist end at a desired target
point within the work volume. The accuracy of a robot can be defined in terms of spatial
resolution because the ability to achieve a given target-point depends on how closely the
robot can define the control increments for each of its joint motions.
Repeatability

Repeatability is concerned with the robot’s ability to position its wrist or an end
effector attached to its wrist at a point in space that had previously been taught to the
robot. Repeatability and accuracy has to two different aspects of the robot’s precision.

6.a)

The sensors used in robotics include a wide range of devices which can be divided into the
following general categories:

a. Tactile sensors

b. Proximity and range sensors

c. Miscellaneous sensors and sensor based systems

d. Machine vision systems

Tactile Sensors

Tactile sensors are devices which indicate contact between themselves and some other solid
object. Tactile sensing devices can be classified into two classes: Touch Sensors and Force
Sensors.

Touch sensors provide a binary output signal which indicates whether or not contact has been
made with the object.

Force sensors (Stress Sensors) indicate not only the contact has been made with the object but
also the magnitude of the contact force between the two objects.

Touch sensors

Touch sensors are used to indicate that contact has been made between two objects without
regard to the magnitude of the contacting force. Included within this category are simple

devices such as limit switches, micro-switches, and the like. The simpler devices are
frequently used in the design of interlock systems in robotics. For example, they can be used
to indicate the presence or absence of parts in a fixture or at the pick-up point along a
conveyor.

Another use for a touch sensing device would be as part of an inspection probe which is
manipulated by the robot to measure dimensions on a work part. A robot with 6 degrees of
freedom would be capable of accessing surfaces on the part that would be difficult for a
three-axis coordinate measuring machine, the inspection system normally considered for such
an inspection task. Unfortunately, the robot’s accuracy would be a limiting factor in contact
inspection work.

Force Sensors

The capacity to measure the forces permits the robot to perform a number of tasks. These
include the capability to grasp parts of different sizes in material handling, machine loading
and assembly work, applying the appropriate level of force for the given part.

Force sensing in robotics can be accomplished in several ways. A commonly used technique
is a “force sensing wrist”. This consists of a special load-cell mounted between the gripper
and the wrist. Another technique is to measure the torque being exerted by each joint. A third
technique is to form an array of force-sensing elements so that the shape and other
information about the contact surface can be determined.

6.b)

Robots are used in a wide field of applications in industry. Most of the current applications
are in manufacturing. The applications can usually be classified into one of the following
categories: (1) material handling, (2) processing operations, and (3) assembly
and inspection.
Material Handling Applications
In material handling applications, the robot moves materials or parts from one place to
another. To accomplish the transfer, the robot is equipped with a gripper that must be
designed to handle the specific part or parts to be moved. Included within this application
category are (1) material transfer and (2) machine loading and/or unloading. In many material
handling applications, the parts must be presented to the robot in a known position
and orientation. This requires some form of material handling device to deliver the parts
into the work cell in this position and orientation.
Material Transfer.
These applications are ones in which the primary purpose of the robot is to move parts from
one location to another. In many cases, reorientation of the part is accomplished during the
move. The basic application in this category is called a pick-and-place operation, in which the
robot picks up a part and deposits it at a new location.

Industrial robot applications of machine loading and/or unloading include the
following processes:
* Die casting. The robot unloads parts from the die casting machine. Peripheral operations
sometimes performed by the robot include dipping the parts into a water
bath for cooling.
« Plastic molding. Plastic molding is similar to die casting. The robot unloads molded
parts from the injection molding machine.
» Metal machining operations. The robot loads raw blanks into the machine tool and
unloads finished parts from the machine.
« Forging. The robot typically loads the raw hot billet into the die, holds it during the
forging strikes, and removes it from the forge hammer. The hammering action and

the risk of damage to the die or end effector are significant technical problems.

« Pressworking. Human operators work at considerable risk in sheetmetal pressworking
operations because of the action of the press. Robots are used to substitute for

the workers to reduce the danger. In these applications, the robot loads the blank

into the press, then the stamping operation is performed, and the part falls out of

the machine into a container.

* Heat-treating. These are often relatively simple operations in which the robot loads
and/or unloads parts from a furnace.

6.c) | ROBOT END EFFECTORS
An end effector is a device that attaches to the wrist of the robot arm and enables the
general-purpose robot to perform a specific task. It is sometimes referred to as the robot‘s
“hand.”
Types of end effectors
The End effectors can be divided into two major categories:
1. Grippers
2. Tools
Grippers are and effectors used to grasp and hold objects. The objects are
generally work parts that are to be moved by the robot. These part handling applications
include machine loading and unloading, picking parts from a conveyor and arranging
parts onto a pallet.
Grippers can be classified as single, double or multiple. The single gripper is
distinguished with only one grasping device mounted to the robot’s wrist.
Detachuble
fingers
Gripper
7.a) | Positions, Orientations and Frames

DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES

A description is used to specify attributes of various objects with which a manipula-tion
system deals. These objects are parts, tools, and the manipulator itself. In this section, we
discuss the description of positions, of orientations, and of an entity that contains both of
these descriptions: the frame.

Description of a position

Once a coordinate system is established, we can locate any point in the universe with a 3
x 1 position vector. Because we wifi often define many coordinate systems in addition to
the universe coordinate system, vectors must be tagged with information identifying
which coordinate system they are defined within. In this book, vectors are written with a
leading superscript indicating the coordinate system to which they are referenced (unless
it is clear from context)—for example, Ap This means that the components of A P have
numerical values that indicate distances along the axes of {A}. Each of these distances
along an axis can be thought of as the result of projecting the vector onto the
corresponding axis. Figure 2.1 pictorially represents a coordinate system, {A}, with three
mutually orthogonal unit vectors with solid heads. A point A P is represented as a vector
and can equivalently be thought of as a position in space, or simply as an ordered set of
three numbers. Individual elements of a vector are given the subscripts X, y, and z:

4 Py
P=|p, |. (2.1)
P

Description of an orientation

In order to describe the orientation of a body, we will attach a coordinate system to the
body and then give a description of this coordinate system relative to the reference
system.

In Fig. 2.2, coordinate system (B) has been attached to the body in a known way. A
description of {B} relative to (A) now suffices to give the orientation of the body. Thus,
positions of points are described with vectors and orientations of bodies are described
with an attached coordinate system. One way to describe the body-attached coordinate
system, (B), is to write the unit vectors of its three principal axes2 in terms of the
coordinate system {A}.

{4)

FIGURE 2.2: Locating an object in position and orientation.

We denote the unit vectors giving the principal directions of coordinate system
{B) as ,?‘ FB. and Z. When written in terms of coordinate system {A}, they are
called “"X 5, ¥ g, and 4 Z 5. It will be convenient if we stack these three unit vectors
together as the columns of a 3 x 3 lnatrix, in the order A X, 4¥5, 4 Z5. We will call
this matrix a rotation matrix, and, because this particular rotation matrix describes
{B} relative to {A}, we name it with the notation _';R (the choice of leading sub-
and superscripts in the defimition of rotation matrices will become clear in following
sections):

4 4o 4D A5 1 T2 T3

CR=[4%p A%y AZz|=| 1 1 13 |- (2.2)
¥ T r:
31 T T3

In summary, a set of three vectors may be used to specify an orientation. For
convenience, we will construct a 3 x 3 matrix that has these three vectors as its columns.
Hence, whereas the position of a point is represented with a vector, the orientation of a
body is represented with a matrix.

Description of a frame

The information needed to completely specify the whereabouts of the manipulator hand
in Fig. 2.2 is a position and an orientation. The point on the body whose position we
describe could be chosen arbitrarily, however. For convenience, theSection 2.2
Descriptions: positions, orientations, and frames 23 point whose position we will describe
is chosen as the origin of the body-attached frame. The situation of a position and an
orientation pair arises so often in robotics that we define an entity called a frame, which is
a set of four vectors giving position and orientation information. For example, in Fig. 2.2,
one vector locates the fingertip position and three more describe its orientation.
Equivalently, the description of a frame can be thought of as a position vector and a
rotation matrix. Note that a frame is a coordinate system where, in addition to the
orientation, we give a position vector which locates its origin relative to some other
embedding frame.

For example, frame)]
(B} is described by 2R and * Pgopg, Where “ Ppopg is the vector that locates the
origin of the frame {B}:

{B} = (3R.* Pgogc). (2.8)

In Fig. 2.3, we introduce a graphical representation of frames, which is convenient in
visualizing frames. A frame is depicted by three arrows representing unit vectors defining
the principal axes of the frame. An arrow representing a vector is drawn from one origin
to another. This vector represents the position of the origin at the head of the arrow in
terms of the frame at the tail of the arrow. The direction of this locating arrow tells us, for
example, in Fig. 2.3, that {C} is known relative to {A} and not vice versa.

FIGURE 2.3: Example of several frames.

7.0)

Mappings involving rotated frames

Section 2.2 intraduced the notion of deseribing an orientation by three
unit veetors denoting the principal axes of a body-attached eoordinate
system. For convenience we stack these three unit vectors together as
the eolumns of a 3 x 3 matrix. We will call this matrix a rotation matrix,
and if this particular rotation matrix describes {5} relative to {A}, we
name it with the notation §R.

Nos# that by our definition, the columns of a rotation matrix all
have unit magnitude, and further, these unit vectors are orthogonal. As
we saw esarlier, a consequence of this is that

2r= B8R~ = §R". {2.10]

Therefore, since the columns of 4R are the unit vectors of { B} written
in {A}, then the rows of 4 R are the unit vectors of {A} written in {B}.
So a rotation matpiv can be interpreted as a set of three column
vectors or as a set of three row vectors as follows:
E‘EI
fR= |AXg Wy “Zp}=|BVT|. (2.11)

523

8.2)

matnpslator may be thought of as & set of bediss connected in a chain
by joints. These bodies are called links, Joints form a connection between
& nejghboring pair of links, The term lower pair is used to describe
the connection between a pair of bodies when the relative motion is
characterized by two surfaces sliding over ooe another. Figure 3.1 shows
the six possible lower pair jomts.

Axizi -1 A {
Link i — 1

FIGURE 32 The kinematic function of s link iz to mzintain a fixed
relationehip between the two foint axes it supports. This relationship can be
described with two parameters, the ljok length, @, and the link twist, o

For any two axes in 3-space there exists a well-defined measure of
distence between therm. This distance iz measured along a line which is
mutually perpendicular to both axes. This mutual perpendiculay always
exist? and is unigque except when both axes are parallel, in which case
there are many mutual perpendiculars of equal length. Figure 3.2 shows
link { — 1 and the mutually perpendicular line along which the link
length, «,_,, is measured. Another way to visualize the link parameter
g;_1 is to imagine an expanding cylinder whosze axis is the joint 1 — 1
axiz — when it just touches joint axie i the radius of the cylinder is
erqual to a,_,.

The second parameter needed to define the relative locetion of the
two axes iz called the link twist. Tf we imagine & plane whose normal
i# the musnally perpendicular line just constructed, g can project both
axes ¢ — 1 and ¢ onto this plane and messure the angle between them.
This angle is measured from axis { — 1 to axis ¢ in the right-hand sense
about a;_,.T We will use this definition of the twist of link i =1, &,_,. In
Fig. 3.2, o,_, is indicated as the angle between axis { — | and axis i (the
lines with the triple hash marks are parallel). In the case of intersecting
axes, twist is measured in the plane containing both axes, but the sense

of a;_; is lost. In this special case, one is free to assign the sign of a;_
arbitrarily.

- w o ' 14 . Lon]

Axizf — 1 Asis i

Intermediate links in the chain

Neighboring links have a common joint axis between them. One param-
eter of miercennection has to do with the distance along this common
axis from one link to the next. This parameter is called the lnk offset.
The offset at joint axis ¢ is called d;. The second parameter describes
the amount of rotation abour this rommon axis hetween one link and
ite neighbor. This i= called the joint d.agle, 6.

Figure 3.4 shows the interconnection of link ¢ = 1 and link 7. Recal]
that o, is the mutua] perpendicular between the two axes of link £ — 1.
Likewise a, is the mutual perpendicular defined for link i. The first
parameter of interconnection s the link offset, J; which j= the signed
distance measured along the axis of joirt ¢ from the point where a; |
intersects the axis to the peint where a; intersects the axis. The offser d;
= indicated in Fig. 3.4. The knk offset d; 1s variable if joint { is prismatic.

First and last links in the chain

Link length, a,, and |ink twist, @, depend on joint axes i and i+1. Hence
@, through a, _, and o through o, _, are defined as discussed above in
this section. At the ends of the chain, it will be cur convention to assign
zero to these guantities. Thai is ¢q = a, = 0.0 and oy = &, = 0.0.7
Link offszt, d,, and joint angle, 8., are well defined for joints 2 through
n =1 according to the conventions discussed above m this section. If
joint 1 is revelute, the zero pesition for 8, may be chosen arbitranly and
dy = 0.0 will be our convention. Simlarly, if joint 1 is prismatic, the

zero position of d; may be chosen arbitrarily, and 8, = 0.0 will be our
convention. Exactly the same statements apply to joint n.

These conventions have been chosen so that in a case where a
quantity could he assigned arbitradlypa zero value is assigned so that
later caloulations wil]l be as sltnple as Possible.

8.0) 3.6 Actuator space, joint space, and Cartesian space

The posttion of all the links of a manipulator of n degrees of freedom
cap he specified with = set of n joint variakles. This set of variahles is
often referred to as the n x 1 joint vector. The space of all such joint
vectors i referred to as joint space. Thus far in this chapter we have
heen concerned with computing the Cartesian space description from
kpowledge of the joint space description. We uge the term Cartesion
space when position is measured along orthogonal axes, and orientation
iz measured according to any of the conventions outlined in Chapter 2.
Sometimes the terms task-oriented space or operational space are
used for what we will call Cartesian space.

So far we have implicitly assumed thet each kinematic joint is
actuated directly with some sort of actuator. However, in the case of
many industrial robots, this is noi so. For example, sometimes two
actuators work together in a differential pair to0 move a single joint, or
sometimes a [ineay actuator is used to rotate a revolute joint throngh the
nse of a four-bar linkage. In these cases it is helnful to consider the notion
of actuater pesifions. Since the sensors which measure the position of
the mampulator are often located at the actuators, some computations
must be performed to compute the joint vector as a function of a set of
actuator yalues, or actuator vector.

——

-~ LN -~ ,
¥ \W 1 \
Actuator Joint Carlesian
space space space

N N

3.16 DNMappings between hinematic descriptions.

10.a

Internal world model versus external reality

A central feature of a robot programming system is the world model
that is maintained internally in the computer. Even when this model
is gqmte sjmple, there are ample difficulties in assuring that it matches
the physical reality that it attempts to model. Discrepancies hetween
internal mode] and exterpal reality result in poor or failed grasping of
objects, collisions, and a host of more subtle problems.

This correspondence between internal model and the external world
must be established for the program’s initial state and must be main-
tained throughout its execution. During mitial programming or debug-
ging it is generally up to the user to suffer the burden of ensuring that the
state represented in the program corresponds to the physical state of the
workcell. Unlike more conventional programming, where only internal
variables need fo be saved and restored to reestablish a former situation,
in robot programming, physical objects must usually be repositioned.

Context sensitivity

Bottom-up programming is & standard approach to writing a large
computer program in which one develops small, low level pieces of a
program and then puts them tegether into larger pieces, eventually
resulting in a completed program. For this method to work it is essential
that the smal] pieces be relatively insensitive to the langnage statements
that precede them and that there are no assumptions concerning the
context with which these program pieces execute. For manipulator
progamming this is often not the case; code that worked reliably when
tested in isolation frequently fails when placed in the context of the
larger program. These problems generally arise from dependencies on
manipnlator configuration and speed of motious.

Manipulator programs may be highly sensitive to initial conditions,
for example, the initial manipulator position. In motion trajectories,
the starting position will influence the trajectory that will be used for
the motion. The initial mampulator position may also infinence the
velocity with which the arm will be moving during some critical part
of the motion. For example, these statements are true for manipulators
that follow cubic spline joint space paths studied in Chapter 7. While
these effects might be dealt with by proper programming care, such
ptoblems may not arise until after the initial language statements
have been debugged in isolation and are then joined with statements
preceding them.

Error recovery

Another direct consequence of working with the physical world is that
objects may not be exactly where tliey should be and hence motjons
that deal with them may fail. Part of manipulator programming involves
attempting to take this {jjto account and making assembly operations
as robust as possible, but, even so, errors are likely; and an important
aspect of manipulator programming is how to recover from these errors.

Almost any motion statement in the user's program can fail, some-
times for a variety of reasons. Some of the more comnon causes are
objects shifting or dropping out of the hand, an gbject missing from
where it should be, jamming during an insertion, not being able to
locate a hole, and so on.

10.b

User interface

Since a major motivation for developing an QOLP system is to create
an environment that makes programming manipulators easier, the user
interface is of crucial iinportance. However, the other major motivation is
to remove reliance on use of the physical equipment during programming.
Upon initial consideration, these two goals seem to conflict—robots are
hard enough to program when you can see them, how can it he easier

3-D modeling

A central element in OLP systems is the use of graphic depictions of the
simnlated robot and its workcell. This requires the robot and all fixtures,
parts, and tools in the workeell to be modeled as three-dimensional
objects. To speed up program development, it is desirable to nse any
CAD models of parts or tooling that are directly available from the CAD
system on which the original design was done. As CAD systeins become
more and more prevalent in industry, it becomes more and more likely
that this kind of geometric data will he readily available. Becanse of the
strong desire for this kind of CAD integration from design to production,
it makes sense for an OLP system to contain a CAD modeling subsvstem,
or to be itself a part of & CAD design system, If an OLP system is to
be a stand-alope system, it must have appropriate interfaces to transfer
models to and from external CAD systems. However, even a stand-alone
OLP system should have at least a simple local CAD facility for quickly
creating models of noneritical workeel] items, or for adding robot-speciflc
data to imported CAD models.

Kinematic emulation

A central component in maintaining the vahdity of the simmlated world
15 the faithful emulation of the geometrical aspects of each simulated

manipulator. Coneorning inverse kinematics, the OLP system can inter-
fare to the robot eontroller (n two distiuct ways, Firat, the OLD system
can replace the inverse Kinematics of the robot controller, and always
communicate robot positions in wechanism joint space. The sceond
choice 1s to cormmunicate Cartesian locations to the robot controller ancd
let the contyoller use the inverse kinewnatics supplied by the wmannfaciurer
to solyve for rohot econfigurations. The second chaice is almost. always
preferable cspectally as mannfactiurers begin to bulld arm signature style
calibration nto shar robots. These calibration techmigues enstomize the
mmverse kinemat'es for each individual robot. In tlus case, it hecomes
desirable to commuuicate information at the Cartesian Jevel to robot
controllers.

Path planning emulation

In addition to kinematic emulation for static pesitioning of the manip-
Wator, an OLP svstent shonld accurately cinulate the path tnken by
the mampnlator in moving throngh space. Again, the central problem (s
that the OLP systern needs to simulate the algorithms i the robot
controllers. and these path plannpimg and execution algorithins vary
considerably froin oe robot mamifactnrer to anather. Sinmlation of the
spatial shape of the path taken is inportant for detection of collisions
between the robot and its environment. Simulation of the temporal
aspects of the trajectory are important in predicting the cycle times
of applications. When a robot is operating in a moving environment
(for example, near another robot) accurate simulation of the temporal
attributes of motion is necessary to accurately predict eollisions, and in
some cases to predict communication or synchronization problems such

as deadlock.
Dynamic emulation

Sunulated motion of manipulators can neglect dynamic attributes if the
OLP system does a good job of emulating the trajectory planning algo-
rithm of the controtler and if the actual robot follows desired trajectories
with negligible errors. However, at high speed or under heavy loading
conditions, trajectory tracking errors can become important. Simmulation
of these tracking errors necessitates modeling the dvnamics of the
manipulator and objects which it moves, as well as the control algorithm
used in the manipulator controller. Presently practical problems exist
in obtaining suffictent information from the robot vendors to make this
kind of dynamic simulation of practical value, but in some cases dypamic
simulation can be fruitfully pursued.

Multiprocess simulation

Some industrial applications involve two or mote robots cooperating
in the same environment. Even single robot workeells often contain a
conveyor belt, transfer line, vision system, or some other active device
with which the robot must interact. For this reason, it is important
that an OLP system be able to simulate multiple moving devices and
other activities that involve parallelism. As a basis for this capability,
the underlying language in which the system is implemented should be
a multiprocessing langnage. Such an environment makes it possible to
write independent robot control programs for each of two or more robots
i1 a single cell, and then simulate the action of the cell with the programs
running coucurrently. Adding signal and wait primitives to the language
enables the robots to interact with each other just as they might {n the
application being simulated.

9.b

World modeling

Since manipulation programs must by definition involve moving objects
in three-dimensional space, it is clear that any robot programining
language needs a means of describing such actions. The mest common
element of robot programming languages is the existence of special
geometric types. For example, types are introduced which are used
to represent jont angle sets, ag well as Cartesian positions, orientations,
and frames. Predefined operators which can manipulate these types often
arg available. The “standard frames” introduced in Chapter 3 might
serve as & possible model of the world: All motions are described as tool
frame relative to station frame, with goal frames being constructed from
arbitrary expressions involving geometric types.

Given a robot programming envipopment which supports geometric
types, the robot and other machines, parts, atd fixtures can be modeled
by defining named variables associated with each object of jnterest.
Figure 12.3 shows part of our example workeell with frames attached
in task-relevant locations. Each of these frames would be represented
with a variable of type “frame” in the robot program.
of the objects are not part of such a world mode], and neither are
surfaces, volumes, masses, or other properties. The extent to which
objects in the world are modeled s one of the basic design decisions
made when desiging a robot programming system. Most present-day
systems support only the style just described.

Motion specification

A very basic function of a robot programming language is to allow the
description of desired motions of the robot. Through the use of motion
statements in the language, the user interfaces to path planners and
generators of the style described in Chapter 7. Motjon statements allow
the user to specify via peints and the goal point, and whether to use joint-
interpolated motion or Cartesian strajght-line motion. Additionally, the
user may have control over the speed or duration of a motion.

To illustrate various syntaxes for motion primitives, we wil| consider
the following example manipulator motions: 1) move to position “goall,”
then 2) move in a straight line to position “goal2,” then 3) move without
stopping through “vial” and come to rest at “goal3.” Assuming all of
these path points had already been taught or described textually, this
program segment would be written as follows.

In VAL IL

move goall
moves goall
move vial
move goald

Flow of axecution

As in more conventional computer prograrmning languages, a robot pro-
gramning systemn atlows the user to specify the fiow of execution. That
is, concepts such as testing and branching, looping, calls to subroutines,
and even interrupts are generally found in robot programming languages.

More so than in mmany computer applications, parallel processing
is generally important in automated workeell applications. First of all,
very often two or more robots are used in a single workcell and work
simiitaneously to reduce the cycle time of the process. But even in
single-robot applications such as the one shown in Fig. 12.2, there
1¢ other workcell equipment which must be controlled by the robot
controller in & parallel fashion. Hepce signal and wait prirmtives are
often found in robot programming languages, and occasionally more
sophisticated parallel execution constructs are provided [3].

Ancther frequent oceurrence 1s the need to inoniter various processes
with some kind of sensor. Then, either by interrupt or through polling,
the robot systern must he able to respond to certain events which
are detected by the sensors. The ability easily to specify such event
monitors is afforded by some robot programming languages [2], {3].

Programming environment

As with any computer langnages, a good programming enviromment
helps to increage programmers’ produetivity. Manipulator programming
is diffienlt and tends to be very interactive, with a lot of trial and error.
If the user were forced to continually repeat the “edit-compile-run” cycle
of compiled languages, productivity would be low. Therefore, most robot
progranming languages are now interpreted so that individual Janguage

statements can be run one at a time during program developinent

and debugging. Typical programming support such as text editors.
debuggers, and a file system are also required.

Sensor integration

An extremely important part of robot programming has to do with in-
teraction with sensors. The system should have the minimuin capability
to query touch and force sensors and use the response n if-then-else
constructs. The ability to specify event monitors to watch for transitions
on such sensors in a background mode is also very useful.

Integration with a vision system allows the vision systemn to send the
manipulator system the coordinates of an object of niterest. For example,
in our sample application, a visjon system locates the brackets on the
conveyor belt and returns to the manipulator controller their position
and orientation relative to the camera. Since the camera’s frame is known
relative to the station frame, a desired goal frame fory the manipulator
can be computed from this information.

Some sensors may be part of other equipment in the workcee]l. For
example, some robot controllers can use put from a sensor attached
to a convevor belt so that the manipulator can track the belt's motion
and acquire objects from the belt as it moves [2].

9.2)

Explicit robot programming languages

With the arrival of inexpensive and powerful computers, the trend has
has been increasingly toward programming robots via programs written
m computer programming languages. Usually these computer program-
nung languages have special features which apply to the problemns of
programming manipulators and so are called robot programming
languages (RPLs). Most of the systems which come equipped with
& robot programming language have also retained a teach-pendant style
interface as well.

Robot prograrmning languages have taken on many forms as wel,
We will split them jutc three categories as fallows:

Task-level programming languages

The third level of robot programming methodology is embodied in
task-level programming languages. These are languages which allow
the user to command desired subgoals of the task directly, rather than
to specify the details of every action the robot is to take. In such a
system, the user is able to include instructions in the application program
at a significantly higher level than in an explicit robot programming
language. A task-level robot programming systemn must have the ability
to perform many plaoning tasks automatically. For example, if an
instruction to “grasp the bolt” is issued, the system mwust plan a path of

the manipulator which avoids collision with any surrounding ohstacles,
autoruatically choose a good grasp location on the holt, and grasp it. In
contrast, in an explicit rohot programming language, all these choices
mmust he made by the programmer,

The horder hetween explicit rohot prograinming languages and task-
level programiming languages is quite distinct. Increimental advances are
heing made to explicit robot programming languages which help to ease
programming, hut these enhancements cannot he counted as components
of a task-level programming systemn. True task-leve] programming of
manipulators does not exist yet hut is an active topic of research 9|, [10].

