USN	
-----	--

${\bf INTERNAL\ ASSESSMENT\ TEST-I}$

Sub:	DIGITAL SIGNAL PROCESSING							Code:	17EC52
Date:	06 / 09 / 2019	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE(D)/TCE

Answer any 5 full questions

		Marks	со	RBT
1	Derive an expression for DFT and IDFT of a finite length sequence.	[10]	CO1	L2
2	Compute the 6-point DFT of the sequence $x[n] = [1,3,5,7]$. Plot the magnitude spectrum and the phase spectrum.	[10]	CO1	L2
3(a)	Compute the 4-point DFT of $x[n] = [1,2,3,4]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.	[06]	CO1	L2
3(b)	Compute the IDFT of $X[k] = [9, -3 + j1.7321, -3 - j1.7321]$ using matrix method.	[04]	CO1	L2

USN					
CDI					

INTERNAL ASSESSMENT TEST – I

Sub:	Sub: DIGITAL SIGNAL PROCESSING						Code:	17EC52	
Date:	06 / 09 / 2019	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE(D)/TCE

Answer any 5 full questions

	Answer any 5 run questions			
		Marks	СО	RBT
1	Derive an expression for DFT and IDFT of a finite length sequence.	[10]	CO1	L2
2	Compute the 6-point DFT of the sequence $x[n] = [1,3,5,7]$. Plot the magnitude spectrum and the phase spectrum.	[10]	CO1	L2
3(a)	Compute the 4-point DFT of $x[n] = [1,2,3,4]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.	[06]	CO1	L2
3(b)	Compute the IDFT of $X[k] = [9, -3 + j1.7321, -3 - j1.7321]$ using matrix method.	[04]	CO1	L2

		Marks	СО	RBT
4	The first 5 samples of 8-point DFT of a real 8-point sequence are as follows.	[10]	CO1	L3
	X[k] = [36, -4 + 9.6569j, -4 + 4j, -4 + 1.6569j, -4].			
	Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$.			
	i) $x[0]$ ii) $x[4]$ iii) $\sum_{n=0}^{7} x[n]$ iv) $\sum_{n=0}^{7} x[n] ^2$			
5	Derive the relationship between DFT and Z-transform of a finite length sequence $x[n], 0 \le n \le N-1$. Compute the Z-transform of the sequence $x[n] = [0.5, 0, 0.5, 0]$. Using Z-transform compute the DFT of $x[n]$.	[10]	CO1	L2
6(a)	Compute the DFT of the sequence $x[n] = 0.5^n$, $0 \le n \le 3$ by evaluating the DFT of $x[n] = a^n$, $0 \le n \le N - 1$ and $0 < a < 1$.	[05]	CO1	L2
6(b)	Prove the periodicity and linearity properties of DFT.	[05]	CO1	L2

		Marks	со	RBT
4	The first 5 samples of 8-point DFT of a real 8-point sequence are as follows.	[10]	CO1	L3
	X[k] = [36, -4 + 9.6569j, -4 + 4j, -4 + 1.6569j, -4].			
	Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$.			
	i) $x[0]$ ii) $x[4]$ iii) $\sum_{n=0}^{7} x[n]$ iv) $\sum_{n=0}^{7} x[n] ^2$			
5	Derive the relationship between DFT and Z-transform of a finite length sequence $x[n], 0 \le n \le N-1$. Compute the Z-transform of the sequence $x[n] = [0.5, 0, 0.5, 0]$. Using Z-transform compute the DFT of $x[n]$.	[10]	CO1	L2
6(a)	Compute the DFT of the sequence $x[n] = 0.5^n$, $0 \le n \le 3$ by evaluating the DFT of $x[n] = a^n$, $0 \le n \le N - 1$ and $0 < a < 1$.	[05]	CO1	L2
6(b)	Prove the periodicity and linearity properties of DFT.	[05]	CO1	L2

Solutions

$$x(w) = \sum_{n=-\infty}^{\infty} x(n) e^{jwn}$$

$$x(x) = \sum_{n=-\infty}^{\infty} x(n) e^{jwn}$$

K X(K)	[X(K)]	O
0 16	16 9.8489	-2.3613
-7-6.9282j	4,3589	0.4086
2 4+1.7321	4	3.1416
3 -4 4 4-1.7321j	4.3589	-0.4086
5 -7+6.92821	9.8489	2.3613

2

$$3b \quad 9(0) = (1,3,5)$$

$$9(0) = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k)$$

$$= 1$$

$$9(1,2,3,4,5,6,7,8)$$

$$9(1) = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k)(k)$$

$$9(1) = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k)(k)$$

$$7 = 36$$
 $7 = 36$
 $7 = 1 \times (k)^{2}$
 $8 = 1 \times (k)^{2}$
 $1 = 1 \times (k$

$$X(z) = \sum_{n=0}^{N-1} 2^n$$

$$X(K)z$$
 $n=0$
 $y(n) = 0$
 $y(n) = 0$
 $y(n) = 0$

$$x(n) = (0.5, 0, 0.5, 0)$$

$$x(2) = 0.5 + 0.5 = \frac{2}{124} k(42)$$

$$x(k) = 0.5 + 0.5 = \frac{1}{124} k(42)$$

$$x(k) = \frac{1}{100} k($$

Ga

6 b