

INST	CMR INSTITUTE OF TECHNOLOGY		USN											CAR INSTITUTE OF TICKINGLO	VRIT GY, BENGALURU.	
		Inter	nal Asses	men	t Test	Schem	ne of I	Eval	uatio	n – I						
Sub:	Information Theory a	nd Coding	S	ec	ALL						Co	de:		17EC54		
Date:	07 / 09 / 2019 Duration: 90 mins Max Marks: 50 Sem: V Branch:								ECE/TCE							
	Answer Any FIVE FULL Questions Marks								OBE CO RBT							
a b rep like	fine <i>self-information, e</i> black and white tele production, 12 brightn ely to occur, find the ra	vision, there ess levels are	are abo e necessa	out ary. A	2.25 l Assum	M <i>ega</i> µ 1ing th	oixels nat all	s <i>/f1</i> l the	r <i>ame</i> e leve	. For els are	a goo equall	d y	10	C504.1	L1	
•	inition of each terms	,										1>	(3=3			
NO.	of different frames =	$12^{2.25X10^6}$											1			
Ent	tropy $H(s) = 8.066 \mathrm{X}$	10 ⁶ bits/fr	ame										2			
sy	mbol rate $r_s=rac{1}{3}france$	ne/sec											2			
AVI	erage information rate	$R_s = 2.689$	X 10 ⁶ bi	ts/s	sec								2			
2 Me	ntion different proper	ties of entrop	y. Show 1	that	entro	py is a	dditi	ve.					10	C504.1	L2	
	tropy is non negative		-										1			
End	tropy is symmetric												1			
Ent	tropy has boundaries												1			
EN	tropy is additive												1			
Pro	of for $H'(S) \geq H(S)$												6			
3 The	e state diagram of a Ma	arkov source	is shown	in t	he fig.	3. Sho	ow th	at G	$i_1 \geq i_1$	$G_2 \geq 1$	Н.		10	C504.1	L3	
	a p ₁	1	¹ / ₄ c c ¹ / ₄ Fig. :			p ₂	2 = 1/2		3¼ b)						
H _i	₁ = 0.8113 bits/syn	nbol											1			
H ₁	$_{2} = 0.8113 \ bits/syn$	ıbol											1			
H	= 0.8113 <i>bits/sym</i>	bol											1			
Coo	de tree taking state 1 a	s initial state											1			
Coc	de tree taking state 2 a	s initial state											1			
G 1	l = 1.56 bits/symbo	ol											2			

 $G_1 \geq G_2 \geq H$

4 Show that the Entropy of nth extension of a zero memory source is $H(S^n) = nH(S)$, if a source emits one of the Source Symbols S_1, S_2, S_3 with probabilities of $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ then show that

 $H(S^2) = 2H(S).$ Proof for $H(S^n) = nH(S)$ H(S) = 1.5 bits/sym $H(S^2) = 3 bits/sym$

$$H(S^2) = 2 H(S)$$

5 Apply Shannon's encoding algorithm to the following symbols and obtain the redundancy of the so formed code. If $S = \{\&, *, \%, @, !\}$ And $P = \{\frac{1}{8}, \frac{1}{16}, \frac{3}{16}, \frac{1}{4}, \frac{3}{8}\}$.

Obtaining the Codes

Symbols	Prob	cw	l _i
!	6 16	00	2
@	$\frac{4}{16}$	01	2
%	3 16	101	3
&	$\frac{2}{16}$	110	3
*	$\frac{1}{16}$	1111	4

Average length, $L = 2.4375 \ bits/sym$

Entropy, $H(S) = 2.1085 \ bits/sym$

Efficiency, $\eta_s = 0.865$

Redundancy, $R_{\eta s} = 0.135$

 $\eta_s = 86.5\%$; $R_{\eta s} = 13.5\%$

6 Given the symbols $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$ with respective probabilities P ={0.02, 0.08, 0.1, 0.2, 0.2, 0.4}, construct a binary code by applying Shannon-Fano encoding procedure. Determine the code efficiency and redundancy of the so formed code. Draw the code tree for the same.

Obtaining the codes

Symbols	Prob	cw	li
<i>y</i> ₆	0.4	00	2
<i>y</i> ₅	0.2	01	Я
<i>y</i> ₄	0.2	10	2
<i>y</i> ₃	0.1	110	3
<i>y</i> ₂	0.08	1110	4
<i>y</i> ₁	0.02	1111	4

1

Average length, $L = 2.194 \ bits/sym$ 1			
Entropy, $H(S) = 2.3 \text{ bits/sym}$ 1			
Efficiency, $\eta_s = 0.9539$			
Redundancy, $R_{\eta s}=0.0461$			
$\eta_s = 95.39\%$; $R_{\eta s} = 4.61\%$ 1			
Code tree 1			
7 State of the markov source is as shown in fig. 7. Compute the source Entropy. 10)	C504.1	L3
0.4 0.5			
	2		
$P(A) = P(C) = \frac{5}{18}$ $P(B) = P(D) = \frac{4}{18}$ 2	2		
$H_A = H_C = 0.971 bits/sym \qquad 2$	2		
$H_B = H_D = 1 \ bit/sym$	2		
$H = 0.9839 \ bits/sym$ 2	2		

7.9 Define self-information, entropy and inform - ation rate. consider transmission of pictures in a black and white television, there are ab -out 2.25 Megapixelx | frame. For a good repr -oduction, 12 brightness levels are necessary. Ass -uning that all the levels are earnally likely to occur, find the rate of transmission if one frame is transmitted in every 3 sec. > is self information. Let 'mi be a symbol for transmission at any instant of time with probability Pk', then amount of information (or). self information of me in IIK = LOG 1 PE ii) Entropy: - (31) pollow 38.2 = suppose we have a source than emity one of the "m" symboly in the statical independent manner : 1700 in 5 S={S, S2, 53 ----- Smy then; the average information content. [entropy] in given by 11 is 1 $(+(s) = \sum_{i=1}^{m} P_i \log_2 \frac{1}{P_i} \int bitx sym$

III) Information rate :-

if the source emity symboly at fired time make "To" sym [sec. then; the over -age information rate will be

= 2.25×106 pixely frame

12 brightness levely then,

total number different frame, possible m= (12)^{2,25×106} frame,

equal probability. then;

entropy in given by HCS) may

and Given;

then;

why?

36 Rs = 809:38 ×103 bity/sec 8. Mention different properties of entropy. Show that entropy it additive Properties of Entropy" 1) Entropy function is continous for every independent variable 'Pk' in the interval The Creat 2) Entropy function is symmetrical of itx argumenty H [PK, (I-PK)] = H[CI-PK), PK] 31) External property: ETO show that entropy as boundaries] The lower bound for entropy is H(s)=0; this happens when one of the symbol Pk=1, for any k=1, 2,....m. 10 5 HCS) 5 HCS)may His property of Additivity:-Proof-= consider; S={S, S2; S3. ---- Sq-1, Sq 3 and along with probabilities; P = { P1, P2, P3, ---- Paul , Pay consider; sample of 'sa

Soy =
$$\{ Soy, Soy, Soy, Soy, Soy, Soy, \dots, Soy, i$$

and their probabilities will be;
 $P_{0} = \{ P_{0}, SP_{0}, S = - - - SP_{0}n \}$

$$\sum_{j=1}^{n} P_{0}j = P_{0}, + P_{0}, + - + P_{0}n = P_{0} \rightarrow 0$$
therefore;
 $H^{i} = H[(P_{1}, P_{2}, \dots, P_{0}, i), S(P_{0}, SP_{0}, 2, - - SP_{0}n)]$
 $H^{i} = \sum_{i=1}^{n} P_{i} \log_{2} \frac{1}{P_{i}} + \sum_{j=1}^{n} P_{0}j \log_{2} \frac{1}{P_{0}j}$
 $H^{i} = \sum_{i=1}^{n} P_{i} \log_{2} \frac{1}{P_{i}} + \sum_{j=1}^{n} P_{0}j \log_{2} \frac{1}{P_{0}j}$
 $H^{i} = \sum_{i=1}^{n} P_{i} \log_{2} \frac{1}{P_{i}} - \sum_{j=1}^{n} P_{0}j \log_{2} \frac{1}{P_{0}j}$
 $H^{i} = \sum_{i=1}^{n} P_{i} \log_{2} \frac{1}{P_{i}} + \sum_{j=1}^{n} P_{0}j \log_{2} \frac{1}{P_{0}j}$
 $H^{i} = \sum_{i=1}^{n} P_{i} \log_{2} \frac{1}{P_{i}} + \sum_{j=1}^{n} P_{0}j \log_{2} \frac{1}{P_{0}j}$
 $H^{i} = \sum_{i=1}^{n} P_{i} \log_{2} \frac{1}{P_{i}} + \sum_{j=1}^{n} P_{0}j \log_{2} \frac{1}{P_{0}j}$
 $H^{i} = H + Some Politive avanites$
 $H^{i} = H + Some Politive avanites$
 $H^{i} = \frac{H(2)}{H(2)P_{0}}$

redunency Rm = 1-Ne in Entropy of Entrone (iii Both My and Ry is always expressed in percentage. ve state diagram of a markov source i shown in the fig. 3 show that G1 2 G22H $3_{l_{u}} = 0$ $P_{1} = 1/2$ Y_{u} $P_{2} = 1/2$ Y_{u} $P_{2} = 1/2$ i.) state entropies (H:); w K+3 est? (H: $= \sum_{j=1}^{n} P_{ij} \log_2 \frac{1}{P_{ij}}$ bitplym Given n=2i; 750; i=1, 2-> for i=1; is $H_{1} = \sum_{j=1}^{2} P_{1j} \log_{2} \frac{1}{P_{1j}} \log_{10} T$ $H_{1} = P_{11} \log_{2} \frac{1}{P_{11}} + P_{12} \log_{2} \frac{1}{P_{12}}$ $\frac{1}{P_{12}} = 0.81122 + bity [sym]$ $\Rightarrow \text{ for } i=23$ $H_{2} = \sum_{i=1}^{2} P_{23} \log_{2} \frac{1}{1} = P_{21} \log_{2} \frac{1}{1} + P_{22} \log_{2} \frac{1}{1}$

$$H_{a} = 0.8112 + bity Isym
1.3) Entropy of source [H]:
with:
$$H = \sum_{i=1}^{n} P_{i}H_{i} \quad bity |aym
H = P_{i}H_{i} + P_{2}H_{2} = \frac{1}{2} \times 0.8113 + \frac{1}{2} \times 0.8113
H = 0.8113 bity |aym
H$$$$

$$I = \frac{symbol}{symbol} \frac{1}{streevel} = \frac{sym}{a} \frac{prob}{3|s}$$

$$\frac{sym}{a} \frac{prob}{3|s}$$

$$\frac{sym}{c} \frac{prob}{3|s}$$

$$\frac{sym}{c} \frac{prob}{s|s}$$

$$G_{1} = \frac{1}{s} \sum_{k=1}^{l} \frac{pcml}{sml} \log_{2} \frac{1}{l} = \frac{bit}{smm}$$

$$G_{1} = \frac{pa}{s} \log_{2} \frac{1}{s} + \frac{pb}{s} \log_{2} \frac{1}{s} + \frac{pc}{s} \log_{2} \frac{1}{pc}$$

$$\frac{G_{1} = \frac{1}{s} \frac{sc}{s} \log_{2} \frac{1}{s} + \frac{pb}{s} \log_{2} \frac{1}{s} + \frac{pc}{s} \log_{2} \frac{1}{sc}$$

$$\frac{G_{1} = \frac{1}{s} \frac{sc}{s} \log_{2} \frac{1}{s} + \frac{pc}{s} \log_{2} \frac{1}{s} + \frac{pc}{s} \log_{2} \frac{1}{s}$$

$$\frac{SVm}{s} \frac{prob}{s} \log_{2} \frac{1}{s}$$

$$\frac{SVm}{aa} \frac{q}{s} \log_{2} \frac{1}{s}$$

$$\frac{sym}{ab} \frac{g}{s} \log_{2} \frac{1}{s}$$

$$\frac{sb}{a} \frac{g}{s} \log_{2} \frac{1}{s}$$

$$\frac{sb}{a} \log_{2} \frac{1}{s}$$

$$\frac{sb}{a} \log_{2} \frac{1}{s}$$

$$\frac{c}{a} \log_{2} \frac{1}{s} \log_{2} \frac$$

$$\boxed{G_{12} = 1.28 \text{ bity (sym)}}$$

there fore;
$$\boxed{G_{12} \ge Q_{22} \ge H} / \text{proved}$$

there fore;
$$\boxed{G_{12} \ge Q_{22} \ge H} / \text{proved}$$

Show that the Entropy of the nth extension of a zero memory source i; $H(S^n) = nH(S)_3$

if a source emity one of the source symbols.
 $S_1 > S_2 > S_3$ with probabilities of $\frac{1}{2} > \frac{1}{4} > \frac{1}{4}$ then show that $H(S^n) = 2H(S)$

a) consider a sample the 'S'

 $S = \{S_1 > S_2\}$

with probabilities 3

 $P = \{P_1 > P_2\}$

.:P_1 + P_2 = 1

...

 $H(S) = \sum_{i=1}^{24} P_i \log_2 \frac{1}{i} = P_i \log_2 \frac{1}{i} + P_2 (\log_2 \frac{1}{i}) \rightarrow 0$

For II extension;

 $(M_0 \circ f sym in II ext) = (M_0 \circ f sym in) \frac{ext}{P_1}$

then;

 $S_1 S_2 will occur prob P_1P_1 = P_1$

 $S_2 S_1 will occur prob P_2P_1 = P_1P_2$

 $S_2 S_1 will occur prob P_2P_2 = P_2^2$

 $P_1^2 + P_1P_2 + P_1P_2 + P_2^2 = 1$

= Hody which more the 214 There fore; Entropy for II extension HCs2) will be $H(Cs^2) = \sum_{i=1}^{m^2} P_i \log_2 \frac{1}{P_i}$ S. S. waite prem $= P_{1}^{2} \# 9_{1} \frac{1}{P_{1}^{2}} + 2P_{1} P_{2} \log_{2} \frac{1}{P_{1}P_{2}} + P_{2}^{2} \log_{2} \frac{1}{P_{2}^{2}}$ $= 2P_{1}^{2}\log_{\frac{1}{P_{1}}} + 2P_{1}P_{2}\log_{\frac{1}{P_{1}}} + 2P_{1}P_{2}\log_{\frac{1}{P_{2}}} + 2P_{1}P_{2}\log_$ + 2 P2 1092 1 (0) - P2 (0) - $(+ (s^{2}) = P_{1} (P_{1} + P_{2}) (09_{2} + 2P_{2} (P_{1} + P_{2}) (09_{2})$ $(+(c_{s}^{2}) = 2P_{1}(P_{1} + P_{2}) \log_{2} \frac{1}{P_{1}} + 2P_{2}(P_{1} + P_{2})$ $++Cs^{2}) = 2 [P_{1} LOg_{2}] + P_{2} log_{2}]$ $H(S^2) = 2H(S)$ similary; (HCS")=nHCS) proved by Given; 5= { 51, 52, 533 == (->)-44. with probabilities P={之, 亡, 亡, 5 11019 then minosia prisa S, S, will occurs with prob = 1 = 1 = 4 $S_1 S_2$ will occur with prob = $\frac{1}{2} \cdot \frac{1}{9} = \frac{1}{2}$

 $s_2 s_1$ will occur, with prob = $\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{4}$ Sig will occurr with prob = to -1 = 4 s2 s3 will occorr with prob = ta 1 = 1 S3 S1 will occur with prob = 4. 1 = 1 S3 S2 will occur, with prob = +, + = + S3 S3 will occurs with prob = 1, 1 = 16 There, fore; $+(s^{2}) = \frac{4}{1092} + \frac{4}{8} + \frac{10928}{1092} + \frac{1}{1092} + \frac{109216}{1092}$ (++ cs2) = 3.75 bity ky buti - - 001.77 = = (-5)-4 $H(c_{s}) = P_{1} \log_{2} \frac{1}{P_{1}} + \frac{P_{2} \log_{2} 1}{P_{1}} + \frac{P_{3} \log_{2} 1}{P_{3}} + \frac{P_{3} \log_{2} 1}{P_{3}}$ $H(s) = \frac{2}{2} \log_2 2 + \frac{1}{4} \log_2 4$ (++ cs) = 105 bity| sym Hence; (++ cs2) = 2++6) = 375 | bits (by m 12, 2, 27-7 proved 5. Apply shannon's encoding alogrithm to the Following symbols and obtain the redundancy of the so formed code. if = s= { 2 , * , -10 , @ , 13 and P= { 3, 16, 3 , 1 , 32

Shannon's encoding

$$P = \left\{\frac{9}{16}, \frac{1}{16}, \frac{3}{16}, \frac{1}{16}, \frac{6}{16}\right\}$$

$$P = \left\{\frac{9}{16}, \frac{1}{16}, \frac{3}{16}, \frac{1}{16}, \frac{6}{16}\right\}$$

$$P = \left\{\frac{9}{16}, \frac{1}{16}, \frac{3}{16}, \frac{1}{16}, \frac{1}{16}\right\}$$

$$P = \left\{\frac{9}{16}, \frac{9}{16}, \frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}\right\}$$

$$S = \left\{\frac{1}{1}, \frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right\}$$

$$S = \left\{\frac{1}{16}, \frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}, \frac{1}{16}\right\}$$

$$S = \left\{\frac{1}{16}, \frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}, \frac{1}{16}\right\}$$

$$S = \left\{\frac{1}{16}, \frac{9}{16}, \frac{3}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}\right\}$$

$$S = \left\{\frac{1}{16}, \frac{9}{16}, \frac{3}{16}, \frac{1}{16}, \frac{1}{16$$

$$for i=13$$

$$J_{1} \geq 109_{2} \frac{1}{F_{1}}$$

$$J_{1} \geq 109_{2} \frac{16}{6} \equiv 1.41F$$

$$\boxed{J_{1} \geq 209_{2} \frac{1}{F_{2}}}$$

$$J_{2} \geq 109_{2} \frac{1}{F_{2}}$$

$$J_{2} \geq 109_{2} \frac{16}{F_{2}}$$

$$J_{2} \geq 109_{2} \frac{16}{F_{2}}$$

$$J_{3} \geq 109_{2} \frac{16}{F_{3}}$$

$$J_{3} \geq 109_{2} \frac{16}{F_{3}}$$

$$J_{3} \equiv 3.41F$$

$$\boxed{J_{3} \equiv 3.61F_{3}}$$

$$J_{4} \geq 109_{2} \frac{16}{F_{4}}$$

$$J_{4} \geq 109_{2} \frac{1}{F_{4}}$$

$$J_{4} \equiv 109_{2} \frac{16}{F_{4}}$$

$$J_{5} \geq 109_{2} \frac{1}{F_{4}}$$

Step-4:
Expansion Decimal to Binary
i>
$$a_1 = (0)_0 = (00)_2$$

i) $a_2 = (0,0+5)_0 = (0,01000...)_2$
ii $\frac{1}{5}a_3 = (0,0+2)_0 = (0,10000...)_2$
ii $\frac{1}{5}a_3 = (0,0+2)_0 = (0,10000...)_2$
ii $\frac{1}{5}a_4 = (0,0+2)_0 = (0,10000...)_2$
 $\frac{1}{5}a_4 = (0,0+2)_0 = (0,10000...)_2$
Step-5:-
Table
Step-5:-
Table
 $\frac{1}{1} = \frac{6}{16} \frac{100}{22} \frac{1}{2} - \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{16} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{16} \frac{1}{10} \frac{1}{3} \frac{1}{16} \frac{1}{10} \frac{1}{3} \frac{1}{16} \frac{1}{10} \frac{1}{3} \frac{1}{16} \frac{1}{10} \frac{1}{16} \frac{$

(ii)
$$L = \sum_{i=1}^{N} P_i A_i$$
 bity [sym
 $L = \sum_{i=1}^{N} P_i A_i$
 $L = P_i A_i + P_2 A_2 + P_3 A_3 + P_4 A_4 + P_5 A_5$
 $L = 2.4375$ bity [sym]
(iii) efficiency (N_3):-
 $M_3 = \frac{44CS}{L} = \frac{2.1084}{2.4375}$
 $M_4 = \frac{44CS}{L} = \frac{2.1084}{2.4375}$
 $M_5 = 0.8649 \approx 86.49.1$.
(iv) Peducdency $P_{N_5} = \frac{11}{2}$
 $M_5 = 1 - N_5$
 $M_{N_5} = 1 - N_5$
 $M_{N_5} = 1 - N_5$
 $M_{N_5} = 1 - N_5$
(i) $P_{N_5} = 0.1351$) $= 13.51/1$.
Given the symboly $S = \{S_1, S_2, S_3, S_4, S_5, S_5\}$
with respective probabilities $p_2 d_0.02, 0.05, 0.$

and the second

with probabilities

$$P = \left(\begin{array}{c} 0.02, 0.08, 0.1, 0.2, 0.1, 0.4 \end{array}\right)$$

$$P_{L} \quad P_{S} \quad P_{u} \quad P_{S} \quad P_{L} \quad$$

rable:-Alir. cus l: sym 56 11 0.4 SS 0.2 10 54 012 0 S3 0.1 001 3 Sz 0.08 0001 4-2-3 SI 0.02 Hind Flied D 0000 7 200 2 -0 tree ; initial 0 1 0 1 0 1 0 1 5, 55 1 53 5 todadate 51 \rightarrow H(s)= $\sum_{i=1}^{m} P_i \log_2 \frac{1}{P_i}$ bity lsym $H(cs) = 0.4 \log_2(\frac{1}{0.4}) + 2(0.2) \log_2(\frac{1}{0.2}) +$ 0.1 10g 2 (1) + 0.02 10g (1)+ $0.02 109_2(1)$ H(S) = 2.21 bity sym 0 90.01

 \rightarrow $L = \sum_{i=1}^{m} P_i L_i$ $L = P, l, + P_2 l_2 + P_3 l_3 + P_4 l_4 + P_5 l_5 + P_6 l_6$ L = 0.4 (2) + 0.2 (2) + 0.2 (2) + 0.1 (3) + 0.08 (4)+0.02(4) (1)10.0 eggiciency (Ny):- $M_{y} = +1(s) = \frac{2.21}{2.3}$ $M_{s} = 0.9608 = 96.08.1.$ 9 Redundancy (Rng):= (9)7 RM = 1-14 -01.100 [Rn = 0.0392 ~ 3.92% ate of the markov source is as shown in fig 7. compute the source Entropy and tet of too stantity deid (D77 Q 1010-FB 10 - (3)9 ARY O'M

i) State probabilities will be; P(A) = 0.6 P(A) + 0.5 P(D) ->0 PCB) = OIY PCA) + OIS PCD) -> D PCC) = 0,5P(B) +0,6P(C) ->3 $P(D) = 0.9P(B) + 0.4P(C) \rightarrow @$ From' -> ear O 0.4 P(A) = 0.5 P(D) - $P(A) = \frac{5}{4}P(D) \longrightarrow \bigcirc$ > car & O.YPCO) = O.S PCB) $P(c) = \frac{5}{4} P(B) \longrightarrow \bigcirc$ substitute ear Din ear D P(B) = OUT XOIS P(D) + OISP(D) P(B) = P(D) -> (F)

then; subjective eqn (D) in ear(C)

$$Pcc) = \sum_{i} P(D)$$
(D) $P(C) = \sum_{i} P(D)$
(D) $P(C) = \sum_{i} P(D)$
(D) $P(C) + P(D) + P(C) + P(D) = 1$
(D) $P(D) = 1$
(D) $P(D) = 2$
(P) $P(D) = 2$

Hences
iii) Entropy of each states [Hi]
with

$$H_{i} = \sum_{j=1}^{n} P_{ij} \log_2 \frac{1}{P_{ij}} \quad bity |sym}$$

 $\Rightarrow for i = A;$
 $H_{A} = \sum_{j=A}^{D} P_{Aj} \cdot \log_2 \frac{1}{P_{Aj}}$
 $H_{A} = P_{AA} \log_2 \frac{1}{P_{AA}} + P_{AB} \log_2 \frac{1}{P_{AB}} + P_{AC} \log_2 \frac{1}{P_{AB}}$
 $H_{A} = P_{AA} \log_2 \frac{1}{P_{AA}} + P_{AB} \log_2 \frac{1}{P_{AB}} + P_{AC} \log_2 \frac{1}{P_{AB}}$
 $H_{A} = 0.6 \log_2 \frac{1}{(0.6)} + 0.4 \log_2 \frac{1}{P_{AD}} + 0.4 O$
 $H_{A} = 0.92095 \cdot \frac{1}{P_{AB}}$
 $H_{B} = 0.5 \log_2 \frac{1}{P_{AB}} + 0.5 \log_2 \frac{1}{P_{AB}}$
 $H_{B} = 0.5 \log_2 \frac{1}{P_{AB}} + 0.5 \log_2 \frac{1}{P_{AB}}$
 $H_{C} = 0.6 \log_2 \frac{1}{P_{AB}} + 0.4 \log_2 \frac{1}{P_{AB}}$

$$\Rightarrow \text{ for } i=D;$$

$$H_{D} = 0.5 (09_{2} \pm 0.7 + 0.5 (09_{2} \pm 0.7))$$

$$(H_{D} = 1 \quad bi4|sym)$$

$$\Rightarrow Entropy of Source + [H]$$

$$H = \sum_{i=R}^{D} P_{i}H; \quad bi4_{1}|sym$$

$$H = P_{A}H_{A} + P_{B}H_{B} + P_{c}H_{c} + P_{b}H_{b}$$

$$H = \frac{5}{18}(0.9309) + \frac{9}{9}(1) + \frac{5}{18}(0.9409)$$

$$+ \frac{2}{18}(1)$$

$$H = 0.983861 \quad bi4_{1}|sym$$