

Scheme Of Evaluation

Internal Assessment Test I – September 2019

Sub: Computer Organization and Architecture Code: 18EC35

Date: 09/09 /2019 Duration: 90mins
Max

Marks:
50 Sem: III Branch: ECE

Note: Answer Any Five Questions

Quest

ion #
Description Marks

Distribut

ion

Ma

x

Ma

rks

1

a)

Describe the basic functional units of a computer.

 Diagram

 Explanation

3

4 7

10

Functional Units
 A computer consists of five functionally independent main parts: input,

memory, arithmetic and logic, output and control units as shown in fig 1.1.

Fig 1.1 Basic functional units of a computer

 The input unit accepts coded information from human operators, from

electromechanical devices such as keyboards or from other computers over digital

communication line. The information received is either stored in the computer

memory for later reference or immediately used by the arithmetic and logic circuitry

to perform the desired operations. The processing steps are determined by the

program stored in the memory. Finally the results are shown on the output unit. All

of these actions are co-ordinated by the control unit. We refer to the arithmetic and

logic circuits in conjunction to the control circuits as the processor and input and

output units are referred to as input-output (I/O) unit.

Instructions or machine instructions are explicit commands that

 I/O

I/O

Input

Output

Memory

 Processor

I/O

Arithmetic

and

logic

Control

 Govern the transfer of information within a computer as well as

between the computers and its I/O devices.

 Specify the arithmetic and logic operations to be performed.

A list of instructions that perform a task is called program. The computer is

completely controlled by a stored program except for a possible external

interruption by an operator or by I/O devices connected to the machine. Data is used

to mean any digital information. Each number, character or instruction is encoded

as a string of binary digits known as bits each having one of two possible values 0

or 1.

Input Unit
 Computers accept the coded information through input units which read the

data. The well known input device is Keyboard. When a key is pressed, the

corresponding letter or digit is automatically translated into its corresponding binary

code and transmitted over a cable to either the memory or processor.

Memory Unit
 The memory unit is used to store program and data. There are two classes

of storage known as primary and secondary.

 Primary memory is a fast storage that operates at electronic speeds.

Programs are stored in the memory while they are executed. The memory contains

large number of semiconductor storage cells each capable of storing one bit but

instead are processed as groups of fixed size called words. The memory is organized

so that a word can be stored or retrieved in one basic operation. A distinct address

is associated to each word in the memory. Addresses are numbers that identify

successive locations.

 Programs must reside in the memory during execution. Instructions and data

can be read out or written into the memory under the control of the processor.

Memory in which any location can be reached in short and fixed amount of time

after specifying its address is called random-access memory (RAM). The small, fast

RAM units are called caches.

 The additional cheaper secondary storage is used when large amount of data

and many programs have to be stored particularly for information that is accessed

infrequently.

Arithmetic and Logic Unit (ALU)
 Any arithmetic and logic operation is initiated by bringing the

required operands into the processor where the operation is performed by the ALU.

When the operands are brought into the processor they are stored in high speed

storage elements called registers. Access time to register is faster than access time

to the fastest cache unit in the memory hierarchy. The control and the arithmetic

logic units are many times faster than any other devices connected to a computer

system.

Output Unit
 The output unit is a counterpart of input unit. Its function is used the

processed results to the outside world. The most familiar example of such a device

is a printer.

Control Unit
 The control unit is a well defined physically separate unit that interacts with

other parts of the machine. The control unit sends the control signals to other units

and senses their states. Timing signals are generated by the control circuits that

determine when a given action is to take place. Data transfer between memory and

processor is also controlled unit through timing signals. A large set of control lines

(wires) carries the signals used for timing and synchronization of events in all units.

b)

Describe the basic performance equation of the computer processor.

 Equation

 Explanation

1

2 3

The total time required to execute the program is known as elapse time. This is

a measure of performance of entire computer system. The processor time

depends on the hardware involved in the execution of individual machine

instructions. This hardware comprises the processor and the memory which are

connected by a bus

Processor Clock

 Processor circuits are controlled by a timing signal called clock. The clock

defines regular time intervals called clock cycles. To execute a machine

instruction, the processor divides the action to be performed into a sequence of

basic steps, such that each can be completed in one clock cycle. The length 𝑃 of

one clock cycle is an important parameter that affects the processor

performance. Its inverse is the clock rate, 𝑅 = 1/𝑃 which is measured in cycles

per second.

Basic Performance Equation

 Let 𝑇 be the processor time required to execute a program that has been

prepared by some high level language. The compiler generates machine level

object program that corresponds to source program. Assume that complete

execution of the program requires the execution of 𝑁 machine language

instructions. Suppose that the average number of basic steps needed to execute

one machine instruction is 𝑆, where each basic step is completed in one clock

cycle. If the clock rate is 𝑅 cycles per second, the program execution time is

given by basic performance equation.

𝑇 =
𝑁 × 𝑆

𝑅

 To achieve high performance, the value of 𝑇 must be reduced which can be

done by reducing 𝑁 and 𝑆, and increasing 𝑅. The value of 𝑁 is reduced if the

source program is compiled in fewer machine instructions. The value of 𝑆 is

reduced if instructions have a smaller number of basic steps to perform or if the

execution of instructions are overlapped. Using a higher-frequency clock

increases the value of 𝑅 which means the time required to complete a basic

execution step is reduced.

2

With an example and block diagram, discuss the basic operational concepts of computer.

 Diagram

 Explanation

4

6

1

0
10

Basic Operational Concepts
 To perform a given task, an appropriate program consisting of a list of

instructions is stored in the memory. Individual instructions are brought from the

memory into the processor, which executes the specified operations. Data to be used

as operands are also stored in the memory. A typical instruction may be

Add LOCA, R0

 This instruction adds the operand at memory location LOCA to the operand

in a register in the processor, R0, and places the sum in the register R0. The original

contents of location LOCA are preserved whereas those of R0 are overwritten. First

the instruction is fetched from the memory into the processor. Next the operand at

LOCA is fetched and added to the contents of R0. Finally the resulting sum is stored

in register R0.

 Transfers between memory and processor are started by sending the address

of the memory location to be accessed to the memory unit and issuing the

appropriate control signals. The data is transferred to or from the memory. The

memory and processor connection is shown in Fig 2.1

Fig 2.1 Connections between the processor and memory

 The Instruction register (IR) holds the instruction that is currently being

executed. Its output is available to control circuits which generate the timing signals

that control various processing elements involved in executing the instruction.

 The Program Counter (PC) holds the address of the next instruction to be

fetched and executed. During the execution of an instruction, the contents of the PC

are updated to correspond to the address of the next instruction to be executed. MAR

and MDR facilitate communication with the memory.

 MAR (Memory Address Register) hold the address of the location to be

accessed and MDR (Memory Data Register) contains data written into or read out

of the addressed location.

 If some devices require urgent servicing then they raise the interrupt signal

interrupting the normal execution of the current program. The processor provides

the requested service by executing the appropriate interrupt service routine.

3 a)

Represent the following using binary 1’s and 2’s complement numbers: 𝑖) (−3)10,
𝑖𝑖) (−8)10, 𝑖𝑖𝑖) (6)10, 𝑖𝑣) (−12)10

 Conversion from decimal to1’S AND 2’s complement binary 1 mark for each. 1 * 4 4
10

i) -3

1’s complement:

3 – 0000011

-3 – 11111100

2’s complement:

3 – 00000011

-3 – 11111101

ii) -8

1’s complement:

8 – 00001000

-8 – 11110111

2’s complement:

8 – 00001000

-8 – 111111000

ii)6

1’s complement:

6 – 00000110

2’s complement:

6- 00000110

ii)-12

1’s complement:

12- 00001100

2’s complement:

12- 11110100

b)

Convert the following decimal numbers to signed binary and find the result of the

arithmetic operations and also comment on the status of the overflow flag:

 𝑖) (−14)10 – (11)10, 𝑖𝑖) (−10)10 – (13)10

 Conversion from decimal to 2’s complement binary.

 Subtraction

 Comments on Overflow flag

0.5

2

0.5 6

 𝑖) (−14)10 – (11)10
2’s complement representation of -14

14 – 01110

-14 – 10010

11- 01011

Add subtrahend with 2’s complement of minuend

-14 + 10010 +

-11 10101

 1] 00111 ---- 7

The answer is incorrect, Overflow flag will be set.

𝑖𝑖) (−10)10 – (13)10

2’s complement representation of -10

10 – 01010

-10 – 10110

13- 01101

Add subtrahend with 2’s complement of minuend

-10 + 10110 +

-13 10011

 1] 01001 ---- 9 the answer is incorrect , Overflow flag will be set

4

a)

Exaplain the straight line sequencing of instructions execution of a program with an

example.

 Diagram

 Explanation with example

2

4 6

10

Instruction Execution and Straight-Line Sequence
 We assume computer allows one memory operand per instruction and has a

number of processor registers. Fig 1.12 shows a program segment in the memory

of a computer. The word length is 32 bits and the memory is byte addressable. Each

instruction is 4 bytes long, the second and third instructions start at addresses 𝑖 + 4

and 𝑖 + 8.

 The Program Counter (PC) contains the address of the instruction to be

executed next. To begin executing a program, the address of its fist instruction must

be placed in to PC. Then the processor control circuits use the information in the

PC to fetch and execute the instructions, one at a time, in the order of increasing

addresses. This is called straight-line sequencing.

 Executing a given instruction is a two phase-procedure. In the first phase

called instruction fetch, the instruction is fetched from the memory location whose

address is in the PC. This instruction is placed in the instruction register (IR) in the

processor. At the start of second phase called instruction execute, the instruction in

the IR is examined to determine which operation is to be determined.

 Address Contents

Begin execution here 𝑖 𝑀𝑜𝑣𝑒 𝐴. 𝑅0

 𝑖 + 4 𝐴𝑑𝑑 𝐵, 𝑅0 3-

instruction

program

 𝑖 + 8 𝑀𝑜𝑣𝑒 𝑅0, 𝐶 segment





 𝐴



 𝐵 Data

for the



program



 𝐶

Fig 1.12: A program for 𝐶 ← [𝐴] + [𝐵]

Branching

Consider a task of adding a list of 𝑛 numbers. The address of the memory

locations containing the 𝑛 numbers are given as 𝑁𝑈𝑀1, 𝑁𝑈𝑀2, 𝑁𝑈𝑀𝑛 and

a separate 𝐴𝐷𝐷 instruction is used to add each number to the contents of the register

𝑅0. After all numbers have been added, the result is placed in the memory location

𝑆𝑈𝑀.

 Instead of using a long list of 𝐴𝑑𝑑 instructions, it is possible to place a single

𝐴𝑑𝑑 instruction in a program loop as shown in Fig 1.13. The loop is a straight line

sequence of instructions executed as many times as needed. It starts at location

LOOP and ends at the instruction Branch>0. 𝑅1 is used as a counter to determine

the number of times loop is executed and holds the contents of the memory location

𝑁 which contains the number of entries in the list 𝑛. Then, within the body of loop,

the instruction

𝐷𝑒𝑐𝑟𝑒𝑎𝑚𝑒𝑛𝑡 𝑅1

 Execution of the loop is repeated as long as the result of the decrement

operation is greater than zero.

 𝑀𝑜𝑣𝑒 𝑁, 𝑅1

 𝐶𝑙𝑒𝑎𝑟 𝑅0

 Determine the address of

 “Next” number and add

 “Next” number to R0

 𝐷𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑅1

 𝐵𝑟𝑎𝑛𝑐ℎ > 0 LOOP

 𝑀𝑜𝑣𝑒 𝑅𝑜, 𝑆𝑈𝑀



 SUM

 N 𝑛

 NUM1

 NUM2





 NUMn

Fig 1.13: Using a loop to add 𝑛 numbers

 A conditional branch instruction causes a branch only if a specified

condition is satisfied. If the condition is not satisfied, the PC is incremented in a

normal way and the next instruction in sequential address order is fetched and

executed.

b)

Write an assembly language program to perform the following operation: 𝐶 = 𝐴 + 𝐵.

Where C,A and B are memory operands.

 Logic

 Assembly Language program

1

3 4

MOVE A,R1

ADD B,R1

MOVE R1,C

5

Describe any five typical addressing modes used in a computer with examples.

 2 marks for each addressing mode
2 * 5

1

0
10

Addressing Modes
 The different ways in which the location of an operand is specified in an

instruction is known as addressing modes. Variables and constants are the simplest

data types. In assembly language, a variable is represented by allocating a register

or memory location to hold its value. Thus, the value can be changed as needed

using appropriate instructions.

 Register mode – The operand is the contents of a processor register; the

name of the register is given in the instruction.

 Absolute mode – The operand is in a memory location; the address of this

location is given explicitly in the instruction.

The instruction 𝑀𝑜𝑣𝑒 𝐿𝑂𝐶, 𝑅2

uses two modes. Processor registers are temporary storage locations where data in

a register is accessed using the Register mode. Address and data constants can be

represented in assembly language using the Immediate mode addressing where the

operand is given explicitly in the instruction. For example, the instruction

𝑀𝑜𝑣𝑒 200𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 , 𝑅0

Places the value 200 in register 𝑅0. A common convention is to use # in front of

the immediate value to indicate that this value is to be used as an immediate

operand. Hence we can write the instruction above in the form

𝑀𝑜𝑣𝑒 #200, 𝑅0
Constant values are used frequently in high-level language programs. The

statements 𝐴 = 𝐵 + 6 contains the constant 6. Assuming that 𝐴 and 𝐵 have been

declared as variables and may be accessed using Absolute mode.

𝑀𝑜𝑣𝑒 𝐵, 𝑅1

𝐴𝑑𝑑 #6, 𝑅1

𝑀𝑜𝑣𝑒 𝑅1, 𝐴

Indirect Addressing mode

 In indirect mode addressing, the instruction does not give the operand or the

address explicitly. Instead it provides information from which the memory address

of the operand can be determined. This address is referred to as effective address

(EA) of the operand.

Indirect mode – The effective address of the operand is the contents of a register or

memory location whose address appears in the instruction.

 To execute the 𝐴𝑑𝑑 instruction in Fig 2.1a, the processor uses the value 𝐵,

which is in the register 𝑅1, as the effective address of the operand. It requests a read

operation from the memory to read the contents of location 𝐵. The value read is the

desired operand, which the processor adds to the contents of register 𝑅0. Indirect

addressing through a memory location is also possible as shown in Fig 2.1b. In this

case, the processor first reads the contents of memory location 𝐴, then request the

second read operation using the value 𝐵 as a address to obtain the operand.

a) Through a general purpose register b) Through a memory

location

Fig 2.1: Indirect addressing

 The register or the memory location that contains the address of the operand

is called a pointer.

Index Addressing Mode

 This addressing mode provides flexibility for accessing operands and is

useful in dealing with lists and arrays.

 Index mode – The effective address of the operand is generated by adding a

constant value to the contents of a register. This register is

referred to as index register.

We indicate the Index mode symbolically as 𝑋(𝑅𝑖) where 𝑋 denotes the

constant value contained in the instruction and 𝑅𝑖 is the name of the register

involved. The effective address of the operand is given by

𝐸𝐴 = 𝑋 + [𝑅𝑖]

Fig 2.2 illustrates two ways of using Index mode. In Fig 2.2a, the index

register 𝑅1 contains the address of the memory location and the value 𝑋 defines an

offset or displacement from this address to the location where the operand is found.

Fig 2.2 a: Offset is given as a constant

 An alternate use is illustrated in Fig 2.2b. Here, the constant X corresponds

to a memory address and the content of the index register defines the offset to the

operand. In either case, the effective address is the sum of two values, one is given

explicitly in the instruction and the other is stored in the register.

Fig 2.2b: Offset is in the register

Relative Addressing
 Here the Program Counter (PC) is used instead of a general purpose register.

In Relative mode, the effective address is determined by the Index mode using

program counter in place of general-purpose register 𝑅𝑖. It’s most common use is

to specify the target address in branch instructions. An instruction such as

𝐵𝑟𝑎𝑛𝑐ℎ > 0 𝐿𝑂𝑂𝑃

causes program execution to go to the branch target location identified by the name

LOOP if the branch condition is satisfied. This location can be computed by

specifying it as an offset from the current value of the program counter. Suppose

that Relative mode is used to generate the target branch address LOOP in the Branch

instruction of the program

𝐿𝑂𝑂𝑃: 𝐴𝑑𝑑 (𝑅2), 𝑅0

 𝐴𝑑𝑑 #4, 𝑅2

 𝐷𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑅1

 𝐵𝑟𝑎𝑛𝑐ℎ > 0 𝐿𝑂𝑂𝑃

 Assume that the four instructions of the loop body, starting at LOOP are

located at memory locations 1000, 1004, 1008 and 1012. Hence the updated

contents of the PC at the time of branch target address is generated will be 1016.

To branch to location LOOP(1000), the offset needed is 𝑋 = −16.

6

a)

Explain the following assembler directives with an example:
 i) EQU, ii) RESERVE, iii) DATAWORD

 Explanation for Directive one mark each 1 * 3 3

10

DATAWORD directive is used to inform the assembler to place the data in the

address.

N DATAWORD 30

This will allocate a Word size memory location and assign a value 30, the starting

location is given the label N

RESERVE directive declares a memory block and does not cause any data to be

loaded in these locations.

NUM RESERVE 100, this reserve 100 continuous byte locations and the starting

label is NUM.

EQU directive is used to assign a value to a label

SUM EQU 200

It informs the assembler that the name SUM should be replaced by the value 200

wherever it appears in the program.

b)

Write an Assembly language program to add N numbers in an array. Use proper

assembler directives to assign memory locations for program and data.

 Logic

 Assembly Language program

2

5 7

ORIGIN 1000 ; SOURCE DATA STARTS FROM ADDRESS1000

SRC DATAWORD 100,120,20,30,.....,60 ; DECLARE WORD ARRAY

ORIGIN 2000 ; DESTINATION AT 2000

SUM DATAWORD 0

N EQU 100 ; THE NUMBER OF ELEMENTS IN THE ARRAY

ORIGIN 3000 ; PROGRAM IS STORED FROM LOCATION 3000

START MOVE #SRC,R1 ; INITIALISE POINTER

 MOVE N,R2 ; INITIALIZE COUNTER

CLR R3 ; CLEAR TARGET REGISTER FOR RESULT

BACK ADD (R1)+,R3

DEC R2

BGTZ BACK

MOVE R3,SUM ; STORE THE RESULT

END START

