

USN

Internal Assessment Scheme –OCT. 2019

Sub: Verilog HDL Sub Code: 17EC53 Branch:

Date: /10/2018 Duration: 90 min’s Max Marks: 50 Sem / Sec: 5
th

(ECE/TCE)

Answer any FIVE FULL Questions

1)Design a 2-to-1 multiplexer using bufifo and bufifl gates as shown below. The delay

specification for gates bl and b2 are shown in table below. Apply stimulus and test the

output values.

Module mux21(in1,in2,s,out);

Input in1,in2,s;

Output out;

Bufif1(1:3:5,2:4:6,3:5:7) m1(out1,in1,s);

Bufif10(1:3:5,2:4:6,3:5:7) m1(out1,in0,s);

Endmodule

stimulus

Module mux21tb;

Reg in1,in0,s;

Wire out;

Initial

Begin

In0=0;in1=1;s=0;#100;

In0=1;in1=9;s=0;#100;

End

endmodule

2)Explain different operators supported by Verilog HDL.and also

discuss the precedence of operators

Arithmetic Operators
There are two types of arithmetic operators: binary and unary.

Binary operators

Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power (**),

and modulus (%). Binary operators take two operands.

105
A = 4'b0011; B = 4'b0100; // A and B are register vectors

D = 6; E = 4; F=2// D and E are integers

A * B // Multiply A and B. Evaluates to 4'b1100

D / E // Divide D by E. Evaluates to 1. Truncates any fractional part.

A + B // Add A and B. Evaluates to 4'b0111

B - A // Subtract A from B. Evaluates to 4'b0001

F = E ** F; //E to the power F, yields 16

If any operand bit has a value x, then the result of the entire expression is x. This seems

intuitive because if an operand value is not known precisely, the result should be an

unknown.
in1 = 4'b101x;

in2 = 4'b1010;

sum = in1 + in2; // sum will be evaluated to the value 4'bx

Modulus operators produce the remainder from the division of two numbers. They

operate similarly to the modulus operator in the C programming language.
13 % 3 // Evaluates to 1

16 % 4 // Evaluates to 0

-7 % 2 // Evaluates to -1, takes sign of the first operand

7 % -2 // Evaluates to +1, takes sign of the first operand

Unary operators

The operators + and - can also work as unary operators. They are used to specify the

positive or negative sign of the operand. Unary + or ? operators have higher precedence

than the binary + or ? operators.
-4 // Negative 4

+5 // Positive 5

Negative numbers are represented as 2's complement internally in Verilog. It is advisable to use

negative numbers only of the type integer or real in expressions. Designers should avoid negative

numbers of the type <sss> '<base> <nnn> in expressions because they are

converted to unsigned 2's complement numbers and hence yield unexpected results.

Logical operators are logical-and (&&), logical-or (||) and logical-not (!). Operators &&

and || are binary operators. Operator ! is a unary operator. Logical operators follow these

conditions:

1. Logical operators always evaluate to a 1-bit value, 0 (false), 1 (true), or x

(ambiguous).

2. If an operand is not equal to zero, it is equivalent to a logical 1 (true condition). If

it is 01equal to zero, it is equivalent to a logical 0 (false condition). If any operand

bit is x or z, it is equivalent to x (ambiguous condition) and is normally treated by

simulators as a false condition.

3. Logical operators take variables or expressions as operands.

Relational Operators
Relational operators are greater-than (>), less-than (<), greater-than-or-equal-to (>=), and

less-than-or-equal-to (<=). If relational operators are used in an expression, the

expression returns a logical value of 1 if the expression is true and 0 if the expression is

false. If there are any unknown or z bits in the operands, the expression takes a value x.

These operators function exactly as the corresponding operators in the C programming

language.

Equality operators are logical equality (==), logical inequality (!=), case equality (===),

and case inequality (!==). When used in an expression, equality operators return logical

value 1 if true, 0 if false. These operators compare the two operands bit by bit, with zero

filling if the operands are of unequal length.

Bitwise operators are negation (~), and(&), or (|), xor (^), xnor (^~, ~^). Bitwise operators

perform a bit-by-bit operation on two operands. They take each bit in one operand and

perform the operation with the corresponding bit in the other operand. If one operand is

shorter than the other, it will be bit-extended with zeros to match the length of the longer

operand.

Reduction operators are and (&), nand (~&), or (|), nor (~|), xor (^), and xnor (~^, ^~).

Reduction operators take only one operand. Reduction operators perform a bitwise

operation on a single vector operand and yield a 1-bit result.

Shift Operators
Shift operators are right shift (>>), left shift (<<), arithmetic right shift (>>>), and

arithmetic left shift (<<<). Regular shift operators shift a vector operand to the right or

the left by a specified number of bits. The operands are the vector and the number of bits

to shift. When the bits are shifted, the vacant bit positions are filled with zeros. Shift

operations do not wrap around. Arithmetic shift operators use the context of the

expression to determine the value with which to fill the vacated bits.

Operator Precedence
Having discussed the operators, it is now important to discuss operator precedence. If no

parentheses are used to separate parts of expressions, Verilog enforces the following

precedence.

3) (a)Design 4-bit adder using carry look ahead logic using dataflow description.
module fulladd4(sum, c_out, a, b, c_in);

// Inputs and outputs

output [3:0] sum;

output c_out;

input [3:0] a,b;

input c_in;

// Internal wires

wire p0,g0, p1,g1, p2,g2, p3,g3;

wire c4, c3, c2, c1;

// compute the p for each stage

assign p0 = a[0] ^ b[0],

p1 = a[1] ^ b[1],

116
p2 = a[2] ^ b[2],

p3 = a[3] ^ b[3];

// compute the g for each stage

assign g0 = a[0] & b[0],

g1 = a[1] & b[1],

g2 = a[2] & b[2],

g3 = a[3] & b[3];

// compute the carry for each stage

// Note that c_in is equivalent c0 in the arithmetic equation for

// carry lookahead computation

assign c1 = g0 | (p0 & c_in),

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in),

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in),

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) |

(p3 & p2 & p1 & p0 & c_in);

// Compute Sum

assign sum[0] = p0 ^ c_in,

sum[1] = p1 ^ c1,

sum[2] = p2 ^ c2,

sum[3] = p3 ^ c3;

// Assign carry output

assign c_out = c4;

endmodule

(b) Explain the primitive gates supported by Verilog HDL?.

Gate Types
A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates

as predefined primitives. These primitives are instantiated like modules except that they

are predefined in Verilog and do not need a module definition. All logic circuits can be

designed by using basic gates. There are two classes of basic gates: and/or gates and

buf/not gates.

5.1.1 And/Or Gates
And/or gates have one scalar output and multiple scalar inputs. The first terminal in the

list of gate terminals is an output and the other terminals are inputs. The output of a gate

is evaluated as soon as one of the inputs changes. The and/or gates available in Verilog

are shown below.
and or xor

nand nor xnor

These gates are instantiated to build logic circuits in Verilog. Examples of gate

instantiations are shown below

Gate Instantiation of And/Or Gates
wire OUT, IN1, IN2;

// basic gate instantiations.

and a1(OUT, IN1, IN2);

nand na1(OUT, IN1, IN2);

or or1(OUT, IN1, IN2);

nor nor1(OUT, IN1, IN2);

xor x1(OUT, IN1, IN2);

xnor nx1(OUT, IN1, IN2);

// More than two inputs; 3 input nand gate

nand na1_3inp(OUT, IN1, IN2, IN3);

// gate instantiation without instance name

and (OUT, IN1, IN2); // legal gate instantiation

Truth Tables for And/Or

Buf/Not Gates
Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in

the port list is connected to the input. Other terminals are connected to the outputs. We

will discuss gates that have one input and one output.

4) Explain system tasks with Verilog programs.

System Tasks
Verilog provides standard system tasks for certain routine operations. All system tasks

appear in the form $<keyword>. Operations such as displaying on the screen, monitoring

values of nets, stopping, and finishing are done by system tasks. We will discuss only the

most useful system tasks. Other tasks are listed in Verilog manuals provided by your

simulator vendor or in the IEEE Standard Verilog Hardware Description Language

specification.

Displaying information

$display is the main system task for displaying values of variables or strings or

expressions. This is one of the most useful tasks in Verilog.

Usage: $display(p1, p2, p3,....., pn);

p1, p2, p3,..., pn can be quoted strings or variables or expressions. The format of $display

is very similar to printf in C. A $display inserts a newline at the end of the string by

default. A $display without any arguments produces a newline.

String Format Specifications

Format Display

%d or %D Display variable in decimal

%b or %B Display variable in binary

%s or %S Display string

%h or %H Display variable in hex

%c or %C Display ASCII character

%m or %M Display hierarchical name (no argument required)

%v or %V Display strength

%o or %O Display variable in octal

%t or %T Display in current time format

%e or %E Display real number in scientific format (e.g., 3e10)

%f or %F Display real number in decimal format (e.g., 2.13)

%g or %G Display real number in scientific or decimal, whichever is shorter

Any one example
//Display the string in quotes

$display("Hello Verilog World");

-- Hello Verilog World

//Display value of current simulation time 230

$display($time);

-- 230

//Display value of 41-bit virtual address 1fe0000001c at time 200

reg [0:40] virtual_addr;

$display("At time %d virtual address is %h", $time, virtual_addr);

-- At time 200 virtual address is 1fe0000001c

//Display value of port_id 5 in binary

reg [4:0] port_id;

$display("ID of the port is %b", port_id);

-- ID of the port is 00101

//Display x characters

//Display value of 4-bit bus 10xx (signal contention) in binary

reg [3:0] bus;

$display("Bus value is %b", bus);

-- Bus value is 10xx

//Display the hierarchical name of instance p1 instantiated under

//the highest-level module called top. No argument is required. This

//is a useful feature)

$display("This string is displayed from %m level of hierarchy");

-- This string is displayed from top.p1 level of hierarchy
5) Explain arrays, parameter and memories data types with examples in Verilog.

Arrays
Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data

types. Multi-dimensional arrays can also be declared with any number of dimensions.

Arrays of nets can also be used to connect ports of generated instances. Each element of

the array can be used in the same fashion as a scalar or vector net. Arrays are accessed by

<array_name>[<subscript>]. For multi-dimensional arrays, indexes need to be provided

for each dimension.
integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables

time chk_point[1:100]; // Array of 100 time checkpoint variables

reg [4:0] port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits

wide

integer matrix[4:0][0:255]; // Two dimensional array of integers

reg [63:0] array_4d [15:0][7:0][7:0][255:0]; //Four dimensional array

wire [7:0] w_array2 [5:0]; // Declare an array of 8 bit vector wire

wire w_array1[7:0][5:0]; // Declare an array of single bit wires

count[5] = 0; // Reset 5th element of array of count variables

chk_point[100] = 0; // Reset 100th time check point value

port_id[3] = 0; // Reset 3rd element (a 5-bit value) of port_id array.

matrix[1][0] = 33559; // Set value of element indexed by [1][0] to

33559

array_4d[0][0][0][0][15:0] = 0; //Clear bits 15:0 of the register

//accessed by indices [0][0][0][0]

port_id = 0; // Illegal syntax - Attempt to write the entire array

Memories
In digital simulation, one often needs to model register files, RAMs, and ROMs.

Memories are modeled in Verilog simply as a one-dimensional array of registers. Each

element of the array is known as an element or word and is addressed by a single array

index. Each word can be one or more bits. It is important to differentiate between n 1-bit

registers and one n-bit register. A particular word in memory is obtained by using the

address as a memory array subscript.
reg mem1bit[0:1023]; // Memory mem1bit with 1K 1-bit words

reg [7:0] membyte[0:1023]; // Memory membyte with 1K 8-bit words(bytes)

membyte[511] // Fetches 1 byte word whose address is 511.

Parameters
Verilog allows constants to be defined in a module by the keyword parameter. Parameters

cannot be used as variables. Parameter values for each module instance can be overridden

individually at compile time. This allows the module instances to be customized. This

aspect is discussed later. Parameter types and sizes can also be defined.
parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Constant defines width of cache

line

parameter signed [15:0] WIDTH; // Fixed sign and range for parameter

// WIDTH

Module definitions may be written in terms of parameters. Hardcoded numbers should be

avoided. Parameters values can be changed at module instantiation or by using the

defparam statement, Useful Modeling Techniques. Thus, the use of parameters makes the module

definition flexible. Module behavior can be altered simply by changing the value of a parameter.

 6)De 6)Design 4-bit ripple carry counter using dataflow description. Also write the

stimulus block to verify the same.
4-bit Ripple Carry Counter

module counter(Q , clock, clear);

// I/O ports

output [3:0] Q;

input clock, clear;

// Instantiate the T flipflops

T_FF tff0(Q[0], clock, clear);

T_FF tff1(Q[1], Q[0], clear);

T_FF tff2(Q[2], Q[1], clear);

T_FF tff3(Q[3], Q[2], clear);

Endmodendmodule

Verilog Code for Edge-Triggered D-flipflop
// Edge-triggered D flipflop

module edge_dff(q, qbar, d, clk, clear);

// Inputs and outputs

output q,qbar;

input d, clk, clear;

// Internal variables

wire s, sbar, r, rbar,cbar;

// dataflow statements

//Create a complement of signal clear

120
assign cbar = ~clear;

// Input latches; A latch is level sensitive. An edge-sensitive

// flip-flop is implemented by using 3 SR latches.

assign sbar = ~(rbar & s),

s = ~(sbar & cbar & ~clk),

r = ~(rbar & ~clk & s),

rbar = ~(r & cbar & d);

// Output latch

assign q = ~(s & qbar),

qbar = ~(q & r & cbar);

endmoendmodule

module stimulus;

// Declare variables for stimulating input

reg CLOCK, CLEAR;

wire [3:0] Q;

initial

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR);

// Instantiate the design block counter

counter c1(Q, CLOCK, CLEAR);

// Stimulate the Clear Signal

initial

begin

CLEAR = 1'b1;

#34 CLEAR = 1'b0;

#200 CLEAR = 1'b1;

#50 CLEAR = 1'b0;

end

// Set up the clock to toggle every 10 time units

initial

begin

CLOCK = 1'b0;

forever #10 CLOCK = ~CLOCK;

end

// Finish the simulation at time 400

initial

begin

#400 $finish;

 endmodule

7) a)Write a note on lexical conventions used in verilog.

Or
(a)Write a note on following lexical conventions used in verilog.

i)operators ii) Identifiers and keywords iii)Strings

Lexical Conventions
The basic lexical conventions used by Verilog HDL are similar to those in the C

programming language. Verilog contains a stream of tokens. Tokens can be comments,

delimiters, numbers, strings, identifiers, and keywords. Verilog HDL is a case-sensitive

language. All keywords are in lowercase.

3.1.1 Whitespace
Blank spaces (\b) , tabs (\t) and newlines (\n) comprise the whitespace. Whitespace is

ignored by Verilog except when it separates tokens. Whitespace is not ignored in strings.

Comments
Comments can be inserted in the code for readability and documentation. There are two

ways to write comments. A one-line comment starts with "//". Verilog skips from that

point to the end of line. A multiple-line comment starts with "/*" and ends with "*/".

Multiple-line comments cannot be nested. However, one-line comments can be

embedded in multiple-line comments.
a = b && c; // This is a one-line comment

/* This is a multiple line

comment */

/* This is /* an illegal */ comment */

/* This is //a legal comment */

Operators
Operators are of three types: unary, binary, and ternary. Unary operators precede the

operand. Binary operators appear between two operands. Ternary operators have two

separate operators that separate three operands.
a = ~ b; // ~ is a unary operator. b is the operand

a = b && c; // && is a binary operator. b and c are operands

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands

Number Specification
There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as <size> '<base format> <number>.

<size> is written only in decimal and specifies the number of bits in the number. Legal

base formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o

or 'O). The number is specified as consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b,

c, d, e, f. Only a subset of these digits is legal for a particular base. Uppercase letters are

legal for number specification.

Unsized numbers

Numbers that are specified without a <base format> specification are decimal numbers

by default. Numbers that are written without a <size> specification have a default number

of bits that is simulator- and machine-specific (must be at least 32).
23456 // This is a 32-bit decimal number by default

'hc3 // This is a 32-bit hexadecimal number

'o21 // This is a 32-bit octal number

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very

important for modeling real circuits. An unknown value is denoted by an x. A high

impedance value is denoted by z.
12'h13x // This is a 12-bit hex number; 4 least significant bits

unknown

6'hx // This is a 6-bit hex number

32'bz // This is a 32-bit high impedance number

Negative numbers

Negative numbers can be specified by putting a minus sign before the size for a constant

number. Size constants are always positive. It is illegal to have a minus sign between

<base format> and <number>. An optional signed specifier can be added for signed

arithmetic.
-6'd3 // 8-bit negative number stored as 2's complement of 3

-6'sd3 // Used for performing signed integer math

4'd-2 // Illegal specification

Strings
A string is a sequence of characters that are enclosed by double quotes. The restriction on

a string is that it must be contained on a single line, that is, without a carriage return. It

cannot be on multiple lines. Strings are treated as a sequence of one-byte ASCII values.
"Hello Verilog World" // is a string

"a / b" // is a string

Identifiers and Keywords
Keywords are special identifiers reserved to define the language constructs. Keywords

are in lowercase. A list of all keywords in Verilog is contained in Appendix C, List of

Keywords, System Tasks, and Compiler Directives.

Identifiers are names given to objects so that they can be referenced in the design.

Identifiers are made up of alphanumeric characters, the underscore (_), or the dollar sign

($). Identifiers are case sensitive. Identifiers start with an alphabetic character or an

underscore. They cannot start with a digit or a $ sign (The $ sign as the first character is

reserved for system tasks, which are explained later in the book).
reg value; // reg is a keyword; value is an identifier

input clk; // input is a keyword, clk is an identifier

Escaped Identifiers
Escaped identifiers begin with the backslash (\) character and end with whitespace

(space, tab, or newline). All characters between backslash and whitespace are processed

literally. Any printable ASCII character can be included in escaped identifiers. Neither

the backslash nor the terminating whitespace is considered to be a part of the identifier.
\a+b-c

my_name

 (b)Write a Verilog dataflow level of abstraction for 4 to 1 multiplexer using

conditional operator.

Modulemultiplexer4_1(din,sel,dout)

output dout ;

input [3:0]din;

input [1:0]sel;

 assign dout = (sel==2'b00) ? din[3]

 (sel==2'b01) ? din[2]

 (sel==2'b10) ? din[1]

 din[0];

endmodule

