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Answer any 5 questions. 

Q. NO        Questions Marks 
OBE 

CO RBT 
1 Explain the following with respect to image enhancement.  

a. Image Negatives 

b. Power law Transformations. 

c. Piece Wise Linear Transformation functions 

 
[2] 
[3] 
[5] 

 
Co2 

 
L1 

2 Consider an image having intensity distribution as show in 1.It is desired to transform this 

histogram to that of specified histogram as given in table 2. Draw the transformation 

function and normalized histograms of image before and after matching. 
Table 1:Intensity distribution  Table 2: Specified 

histogram levels 
0 120  0 0 
1 325  1 0 
2 891  2 0.15 
3 745  3 0.12 
4 1021  4 0.21 
5 1521  5 0.52 
6 775  6 0 
7 227  7 0 

 
 

[10] Co2 L3 

3 What is meant by Laplacian filter? Using the second derivative, develop a Laplacian mask for 
image sharpening. Also Explain high boost filtering.  

[10] Co2 L2 

4 Explain all the noise probability density functions.  [10] Co2 L1 

5 What are the three methods of estimating the degradation function? Explain each of them.  [10] Co2 L2 

6 Explain briefly inverse filtering and Weiner filtering in image processing.  [10] Co2 L1 
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Quest
ion # 
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Distrib
ution 

Max 
Mark

s 

1 

Explain the following with respect to image enhancement. a. Image Negatives 
b. Power law Transformations. c. Piece Wise Linear Transformation functions 

- 

10 Image negatives 2 
Power law transformation 3 
Piece wise linear transformation 5 

2 

Consider an image having intensity distribution as show in 1.It is desired to 

transform this histogram to that of specified histogram as given in table 2. 

Draw the transformation function and normalized histograms of image 

before and after matching. 

Table 1:Intensity distribution  Table 2: Specified 
histogram levels 

0 120  0 0 
1 325  1 0 
2 891  2 0.15 
3 745  3 0.12 
4 1021  4 0.21 
5 1521  5 0.52 
6 775  6 0 
7 227  7 0 

 

- 
10 

Histogram matching 7 
Draw Transformation function, Histogram before and after matching 3 

3 

What is meant by Laplacian filter? Using the second derivative, develop a 
Laplacian mask for image sharpening. Also Explain high boost filtering. 

- 
10 

Definition 1 
Derivation 6 
High boost filtering 3  

4 
Explain all the noise probability density functions. - 

10 PDFs  4 
Mathematical equations 4 

5 

What are the three methods of estimating the degradation function? 
Explain each of them. 

- 

10 Estimation through observation 2 
Experimentation 2 
Modelling 6 

6 
Explain briefly inverse filtering and Weiner filtering in image processing. - 

10 Inverse Filtering 4 
Weiner Filtering 6 

 
 
 
 
 
 



 
 
Solution: 
 
Image Negatives 
The negative of an image with gray levels in the range [0, L - 1] is obtained by using the negative 
transformation shown in Fig.3.3,which is given by the expression: 

s = L  - 1 -  r 
Reversing the intensity levels of an image in this manner produces the equivalent of a 
photographic negative. This type of processing is particularly suited for enhancing white or gray 
detail embedded in dark regions of an image, especially when the black areas are dominant in 
size. 
Log Tramsformations 
The general forrn of the log transformation shown in Fig.3.3 is given by: 

s = c log ( 1 + r) 
where c is a constant, and it is assumed that r ≥ 0. The shape of the log curve in Fig.3.3 shows that 
this transformation maps a narrow range of low gray-level values in the input image into a wider 
range of output levels. The opposite is true of higher values of input levels. We would use a 
transformation of this type to expand the values of dark pixels in an image while compressing the 
higher-level values. The opposite is true of the inverse log transformation. The log function has 
the important characteristic that it compresses the dynamic range of images with large variations 
in pixel values.  
Application: An application in which pixel values have a large dynamic range is the Fourier 
spectrum. The spectrum values may range from 0 to 106 or higher. It is no problem for a 
computer to process numbers of such kind. But image display systems generally will not be able 
to reproduce faithfully such a wide range of intensity values. The net effect is that a significant 
degree of detail will be lost in the display of a typical Fourier spectrum. 
 
Power - Law Transformations 
Power-law transformations have the basic form: 

s=cr
γ

 

where c and γ  are positive constants. Sometimes the equation is written as s = c ( r + є )γ to 
account for an offset (offset is a measurable output when the input is zero). Plots of s versus r for 

various values of  γ  are show in Fig.3.6. Power-law curves with fractional values of γ  map a 
narrow range of dark input values into a wider range of output values, with the opposite being 
true for higher values of input levels. Unlike the log function, here a family of possible 

transformation curves can be obtained simply by varying γ . Curves generated with values of γ  

> 1 have exactly the opposite effect as those generated with values of γ <1. The above equation 

reduces to the identity transformation when c = γ  = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
Applications 
 
1. Gamma correction: 
A variety of devices used for image capture, printing, and display respond according to a power 
law. The exponent in the power law equation is referred to as gamma. The process used to 
correct this power-law response phenomena is called gamma correction. For example, cathode 
ray tube (CRT) devices have an intensity-to voltage response that is a power function. If the value 

of γ  = 2.5, then such display systems would tend to produce images that are darker than 
intented. 
Gamma correction is important in displaying an image accurately on a computer screen is of 
concern. Images that are not corrected properly can look either bleached out or too dark . 
 
Piecewise-Linear Transformation Functions 
 
The principal advantage of piecewise linear functions is that the form of piecewise functions can 
be arbitrarily complex. The principal disadvantage on piece-wise functions is that their 
specification requires considerably more user input. 
 
Contrast stretching 
One of the simplest principle piecewise linear functions is a contrast-stretching transformation. 
Low—contrast images can result from poor illumination, lack of dynamic range in the imaging 
sensor, or even wrong setting of a lens aperture during image acquisition. The idea behind 
contrast stretching is to increase the dynamic range of the gray levels in the image being 
processed. 
Figure 3.l0(a)  shows a typical transformation used for contrast stretching. The locations of 
points (r1, s1) and (r2, s2) control the shape of the transformation function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
If r1= s1, and r2 = s2, the transformation is a linear function that produces no changes in gray 
levels. 
If r1 = r2, s1=0 and s2 = L – 1, the transformation becomes a thresholding function that creates a 
binary image. 
Intermediate values of (r1, s1 ) and (r2, s2) produce various degrees of spread in the gray levels of 

the output image, thus affecting its contrast. In general, r1≤ r2 and s1≤ s2 , is assumed so that the 

function is single valued and monotonically increasing. This condition r1≤ r2 preserves the order 
of gray levels thus preventing the creation of intensity artefacts in the processed image. 
 



 
 
 
Gray-level slicing 
Highlighting a specific range of gray levels in an image often is desired. 
Applications include enhancing features such as masses of water in satellite image and enhancing 
flaws in X-my images. 
There are several ways of doing level slicing.  
  One approach is to display a high value for all gray levels in the range of interest 
and a low value for all other gray levels. This transformation shown in Fig.3.11 (a) produces a 
binary image.  
  The second approach, based on the transformation shown in Fig.3.11 (b),brightens 
the desired range of gray levels but preserves the background in the image. Figure 3.11(c) shows 
a gray scale image, and Fig.3.11(d) shows the result of using the transformation in Fig.3.11(a).  
 
 
 
 
 
 
 
 
 
 
 
Bit-plane slicing 
lnstead of highlighting gray-level ranges, highlighting the contribution made to total image 
appearance by specific bits might be desired. Suppose that each pixel in an image is represented 
by 8 bits. Imagine that the image is composed of eight 1-bit planes, ranging from bit - plane 0 for 
the least significant bit to bit-plane 7 for the most significant bit. In terms of 8- bit bytes, plane 0 
contains all the lowest order bits in the bytes comprising the pixels in the image and plane 7 
contains all the high-order bits.  
Figure 3.12 illustrates these ideas, and Fig.3. 14 shows the various bit planes for the image shown 
in Fig. 3.13.  
 
 
 
 
 
 
 
 
The higher-order bits contain the majority of the visually significant data. The other bit planes 
contribute to more subtle details in the image. 
Separating a digital image into its bit planes is useful for analyzing the relative importance played 
by each bit of the image, a process that aids in determining the adequacy of the number of bits used 
to quantize each pixel. Also, this type of decomposition is useful for image compression. 
 
 

2.  

Intensity Distribution of 3-bit image 

𝑟𝑘 𝑛𝑘 𝑃𝑟(𝑟𝑘)

=
𝑛𝑘

𝑀𝑁
 𝑆𝑘 = (𝐿 − 1) ∑ 𝑝𝑟(𝑟𝑗)

𝑘

𝑗=0

 Round 
off 𝑆𝑘 



0 120 0.0213 0.1493 0 

1 325 0.0578 0.5538 1 

2 891 0.1584 1.6626 2 

3 745 0.1324 2.5897 3 

4 1021 0.1815 3.8603 4 

5 1521 0.2704 5.7531 6 

6 775 0.1378 6.7175 7 

7 227 0.0404 7 7 

MN= 5625 
    

Intensity distribution after equalization 

𝑆𝑘 𝑛𝑘 
0 120 
1 325 
2 891 
3 745 
4 1021 
5 0 
6 1521 
7 1002 

 

Intensity distribution of specified histogram 

𝑧𝑞 𝑝𝑧(𝑧𝑞) 𝐺(𝑧𝑞) 
round 

off  
𝐺(𝑧𝑞) 

0 0 0 0 

1 0 0 0 

2 0.15 1.05 1 

3 0.12 1.89 2 

4 0.21 3.36 3 

5 0.52 7 7 

6 0 7 7 

7 0 7 7 

 
Intensity Distribution after specification 

𝑧𝑞 = 𝐺−1(𝑠𝑘) 𝑛𝑘 

0 120 

1 0 

2 325 

3 891 

4 1021 

5 2523 

6 0 

7 0 
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3. The simplest isotropic derivative operator is the Laplacian, which for a function f(x,y) of two 

variables is defined as: 
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∇2𝑓 =  
𝜕2 𝑓

𝜕2𝑥
+

𝜕2 𝑓

𝜕2𝑦
 

 

 

{ NOTE:  represents DFT and  represents IDFT } 

 
Interesting properties of spatial domain Laplacian filter by taking the inverse Fourier transform 
of H(u, v) defined above shows that we arrive at the same spatial mask:  

 



 
 
UNSHARP MASKING, HIGH-BOOST FILTERING AND HIGH-FREQUENCY EMPHASIS 
FILTERING 
 

 The common thing in highpass filtered images is that it has dark background. This is because HPFs 
eliminate zero frequency from the image’s Fourier Transform. 

 The solution to this is adding a portion of image back to the filtered image. 
 Enhancement using Laplacian does precisely this. 
 But, sometimes it is required to increase the contribution of original image to the overall filtered 

image. This approach, called as the high-boost filtering; is a generalization of unsharp masking. 
 Unsharp masking consists simply of generating a sharp image by subtracting a blurred version of 

an image with the image. That means, a high pass filtered image is obtained by subtracting an 
image with its lowpass filtered image as shown: 

 
 High-boost filtering generalizes this by multiplying f(x,y) by a constant A ≥ 1: 

 
 
In frequency domain, it can be implemented directly using composite filter as follows: 
 

      
4.  The different types of noise are characterized by their probability distributions. Each probability 

density distribution has its unique shape. In general it is not possible to identify the type of noise 

which corrupts an image simply by visually inspecting the image. 

It is important to emphasize here that noise is additive to the image intensity at a pixel location. 
Unless otherwise stated, the noise is considered spatially independent, i.e. the amount of noise 
corruption at a given pixel does not depend on the spatial coordinates of the pixel in the image. 
The Gaussian distribution is often used to describe, at least approximately, any variable that 
tends to cluster around the mean 𝑧̅ Gaussian distribution can be completely characterized by its 
mean 𝑧̅ and the standard deviation σ. 
The Gaussian function has certain very useful mathematical properties. It is symmetric around 
the point 𝑧 = 𝑧̅. The PDF of a gausian random variable, z , is given by 



𝑝(𝑧) =
1

√2𝜋𝜎
𝑒−(𝑧−�̅�)2/2𝜎2

 

Where z represents the intensity, 𝑧̅ is the mean(average) value of z, 𝜎 is its standard deviation. 
The standard deviation squared, 𝜎2 is called the variance of z. approximately 70% of p(z) values 
will be in the range [(𝑧̅ − 𝜎 ),( 𝑧̅ + 𝜎 )] and 95% will be in the range [(𝑧̅ − 2𝜎 ),( 𝑧̅ + 2𝜎 )].  
The Gaussian model is suitable to model the electronic circuitry noise in image acquisition 
systems. It is also useful to characterize the sensor noise which can be due to factors like poor 
illumination or high temperature. 
 

 
The Rayleigh Distribution is left skewed distribution with light tails. An attractive feature of the 
Rayleigh distribution is that the mode can be estimated from the mean. The range is determined 
by the scale parameter b. Its skewness is constant. 
The PDF of Rayleigh noise is given by 

𝑝(𝑧) = {

2

𝑏
(𝑧 − 𝑏)𝑒− 

(𝑧−𝑎)2

𝑏     𝑓𝑜𝑟 𝑧 ≥ 𝑎

0                                𝑓𝑜𝑟 𝑧 < 𝑎 
 

The mean and variance of this density are given by 

𝑧̅ = 𝑎 + √𝜋𝑏/4  

And 

𝜎2 =
𝑏(4 − 𝜋)

4
 

The formula for Rayleigh distribution has 2 factors, the first one (z-a) is a linearly increasing term 

and the second one 𝑒− 
(𝑧−𝑎)2

𝑏  is an exponentially decaying term like the one in Gaussian. The 
second term also indicates that the parameter b plays a role similar to the variance. 
The Rayleigh distribution is useful for modeling skewed distributions. The Rayleigh distribution 
is suitable for characterizing noise in range imaging. 
 
The Erlang distribution is also skewed like the Rayleigh distribution. Similar to the Rayleigh 
distribution, its formula shows two factors, the term zb-1 is responsible for the increase and the 
other term e-az is responsible for the exponential decay. The exponential decay in Erlang 
distribution is slower compared to Rayleigh because Rayleigh has a quadratic decay term. 



 
 The Erlang distribution is suitable for characterizing noise in range imaging. 

The PDF of Erlang noise is given by 

𝑝(𝑧) = {

𝑎𝑏𝑧𝑏−1 

(𝑏 − 1)!
𝑒−𝑎𝑧   𝑓𝑜𝑟 𝑧 ≥ 0

0 𝑓𝑜𝑟 𝑧 < 0

 

Where a>0, bis positive integer and “!” indicates factorial. 
The mean and variance of this density are given by 

𝑧̅ =
𝑏

𝑎
 

𝜎2 =
𝑏

𝑎2
 

Exponential noise is a special case of Erlang distribution with the parameter b = 1 
The PDF is given by 

𝑝(𝑧) = {
𝑎𝑒−𝑎𝑧     𝑓𝑜𝑟 𝑧 ≥ 0

0 𝑓𝑜𝑟 𝑧 < 0
 

Wher a>0. The mean and variance of this density function are given by 

𝑧̅ =
1

𝑎
 

And 𝜎2 =
1

𝑎2 

 
The uniform noise has a PDF which remains constant for specified bounds𝑎 ≤ 𝑧 ≤ 𝑏 of the noise 

amplitude. The constant value of probability is pegged at 
1

𝑏−1
 because the total area under the pdf 

curve is 1. This noise is less practical and is used for random number generator. 
The PDF is given by 

𝑝(𝑧) = {
1

𝑏 − 𝑎
 𝑖𝑓 𝑎 ≤ 𝑧 ≤ 𝑏

𝑜              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The mean and variance of this density function are given by 

𝑧̅ =
𝑎 + 𝑏

2
 

And 𝜎2 =
(𝑏−𝑎)2

12
 

 
Impulse noise generally corresponds to extreme values (intensity 0 for dark and 255 for bright) 
in the image. The noise has only two allowable values the negative impulse causing dark points a 
= 0 and the positive impulse causing the bright points b = 255. The probabilities of the two types 
of noise impulses can be either same or different. If one of the probabilities is zero, the noise will 
be either a salt noise or a pepper noise. 
The PDF is given by  

 

 



 
 

 The Salt and Pepper noise is suitable for characterizing noise due to electrical or 
illumination transients during imaging or communication. 

 Periodic Noise 
Periodic noise is a spatially dependent noise. This can be in the form of spatially sinusoidal 
noise corrupting the image. The Fourier transform of a pure sinusoid is a pair of conjugate 
impulses located at the conjugate frequencies of the sinusoid. Hence the Fourier spectrum of 
the noisy image would indicate a pair of impulse for each frequency in the periodic noise. The 
impulses will be more pronounced if the sinusoid amplitude is large enough. 

5. There are 3 principal ways to estimate the degradation function: 1) Observation. 2) 

Experimentation 3) Mathematical Modeling. The process of restoring an image by using 

degradation function that has been estimated in some way is called blind deconvolution. 

Estimation by Image Observation: This method of estimating the degradation function is used 
when we have absolutely no clue of what caused the image degradation. We just have the 
degraded image given to us. In order to restore the image we must have some idea of what the 
original image could be looking like. On the given degraded image we select a small patch which 
has relatively less noise and has good contrast. Following our guesswork, we attempt to restore 
this patch by applying image operations like sharpening, contrast or brightness adjustment, etc. 
Our objective here is to get the restored patch. It does not depend on what operations we apply 

and in what sequence. Let the Fourier transform of the degraded patch be  and that of the 

restored patch be  Then the Fourier transform of the degradation function  can be 
estimated as: 

  

Following our assumption that  is position invariant, the degradation function 

 will have the same basic shape as . However the scale of  will be larger compared 

to that of . 
Estimation by Experimentation: If the image acquisition system which was used to acquire the 
degraded image is available to us, then we can tune the system settings so that we get an image 
(not necessarily of the same scene/object) of similar degradation. The idea is to recover the same 
system settings which were responsible for producing the degradation which we want to 
estimate. Once we are able to achieve those system settings we need to know the response of the 
system to an impulse signal. An impulse can be simulated using a small bright dot of light. We 

record the system's response for this impulse as  in frequency domain. Since the Fourier 
transform of an impulse is a constant say  the frequency domain representation of the system 

transfer function, i.e. the degradation  is given as: 

                       
Estimation by Modeling: We can mathematically model the physical phenomena or the imaging 
conditions which lead to degraded images. This requires extensive research. For example, it has 
been possible to model the different type of blurring effects (low-pass filtering) due to various 
degrees of severity of atmospheric turbulence conditions. For simple cases of blurring due to 
image motion, it is possible to mathematically derive the degradation function 
 Estimating Degradation due to motion blur 



When we acquire the image of a moving object we generally get a blurred image because of the 
relative motion between the sensor and the object. In this section we consider how to 
mathematically model the blur due to image motion. To simplify the modeling we assume that the 
image moves along a plane and the time varying displacement in x and y directions for every 

pixel is given as x0(t) and y0(t) respectively. If  is the duration for which the camera shutter is 

open, the intensity at each pixel on the blurred image  is computed as an integration of the 

(true, unblurred) image .  intensities over the period . 

Relation between Fourier transform of  and  

The Fourier transform of  can be written as: 

                     

Using the Fourier transform shift property  we 

have       since  does not depend on  
We find that the Fourier transform of degradation due to motion blurring can be formulated as: 

                                  
As we notice from this formulation, the degradation function can be estimated only when the 

image motion is planar and the time-varying displacements  and  are known. For 
general objects which can have articulated motion, it is very difficult to estimate the values 

of  and  for the different parts of the objects. 
 

Once we have estimated the degradation function  the next step is to use it to restore the 
image. This process is called as filtering the degraded image so as to get the restored image as the 
output 
 



6. The Wiener filter solves the signal estimation problem for stationary signals. The filter 
was introduced by Norbert Wiener in the 1940's. A major contribution was the use of a 
statistical model for the estimated signal. The noise present in the signal is reduced by 
comparison with an estimation of the desired noiseless signal. The filter is optimal in the 
sense of the minimum mean square error. The Wiener filtering approach takes into 
account both the degradation function and the noise characteristics for estimating the 
undegraded image. The Wiener filter computes an optimal estimate of the undegraded 
image. 

Assumptions: 

1. The power spectrum  of the noise is available. 

2. The power spectrum  of the original image is available. 
 
3. The image signal and the noise signal are uncorrelated. 
4. Either the image signal or the noise must have zero mean. 
5. The intensity levels in the restored image are a linear function of the levels in the degraded 
    image. 
Optimality Criteria 
The Wiener filter is a minimum mean square error filter. The optimality criteria is to minimize 
the expected value (i.e. the mean) of the square error between the original image f and the 

estimate of the un-degradedimage   

Here the  denotes the expected value. 
The Wiener Filter expression 

                     

where  = degradation function 

         = complex conjugate of  

         =  

          =  = power spectrum of noise 

           =  = power spectrum of undegraded image 

 If the  is zero, the denominator will remain non-zero unless the noise power 
spectrum is also zero. This is an advantage over the inverse filter.  

 The problem with the Wiener filter is that it requires an estimate of  and . 
The latter quantity is difficult to guess because we don't have access to the original 

image . 

 In a simplified expression of the Wiener filter we assume that the ratio  is a 
constant K. 



                                        
 When restoring a degraded image using the Wiener filter, we can interactively adjust the 

value of K as per our visual assessment and obtain the most satisfactory restored image. 
 


