

USN

Internal Assessment Test 3 – Nov. 2019

Sub: Verilog HDL Sub Code: 17EC53 Branch: ECE

Date: 18/11/19 Duration: 90 min’s Max Marks: 50 Sem / Sec: 5th D OBE
Answer any FIVE FULL Questions MARKS CO RBT

1. What are blocking and non-blocking assignment statements? Explain with
examples.
Blocking Assignments
Blocking assignment statements are executed in the order they are specified in a
sequential block. A blocking assignment will not block execution of statements that
follow in a parallel block. Sequential and Parallel Blocks. The ‘=’ operator is used
to specify blocking assignments.

reg x, y, z;
reg [15:0] reg_a, reg_b;

integer count;

initial
begin
x = 0; y = 1; z = 1; //Scalar assignments
count = 0; //Assignment to integer variables
reg_a = 16'b0; reg_b = reg_a; //initialize vectors
#15 reg_a[2] = 1'b1; //Bit select assignment with delay
#10 reg_b[15:13] = {x, y, z} //Assign result of
concatenation
to
// part select of a vector
count = count + 1; //Assignment to an integer
(increment)

end

the statement y = 1 is executed only after x = 0 is executed. The
behavior in a particular block is sequential in a begin-end block if blocking
statements are
used, because the statements can execute only in sequence. The statement count =
count
+ 1 is executed last. The simulation times at which the statements are executed are
as
follows:
• All statements x = 0 through reg_b = reg_a are executed at time 0
• Statement reg_a[2] = 0 at time = 15
• Statement reg_b[15:13] = {x, y, z} at time = 25
• Statement count = count + 1 at time = 25
• Since there is a delay of 15 and 10 in the preceding statements, count = count + 1
will be executed at time = 25 units

[10] CO3 L2

Note that for procedural assignments to registers, if the right-hand side has more
bits than the register variable, the right-hand side is truncated to match the width of
the register variable. The least significant bits are selected and the most significant
bits are discarded. If the right-hand side has fewer bits, zeros are filled in the most
significant bits of the register variable.

Nonblocking Assignments
Nonblocking assignments allow scheduling of assignments without blocking
execution of the statements that follow in a sequential block. A <= operator is used
to specify
nonblocking assignments. Note that this operator has the same symbol as a
relational operator, less_than_equal_to. The operator <= is interpreted as a relational
operator in an expression and as an assignment operator in the context of a
nonblocking assignment. To illustrate the behavior of nonblocking statements and
its difference from blocking
reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count;
//All behavioral statements must be inside an initial or
always block
initial
begin
x = 0; y = 1; z = 1; //Scalar assignments
count = 0; //Assignment to integer variables
reg_a = 16'b0; reg_b = reg_a; //Initialize vectors
reg_a[2] <= #15 1'b1; //Bit select assignment with delay
reg_b[15:13] <= #10 {x, y, z}; //Assign result of
concatenation
//to part select of a vector
count <= count + 1; //Assignment to an integer
(increment)
end

In this example, the statements x = 0 through reg_b = reg_a

2. Explain the different types of buffers and not gates supported by Verilog HDL.
Also write the help of truth table, logic symbol and instantiation examples.
Buf/not gates have one scalar input and one or more scalar outputs. The last
terminal in the port list is connected to the input. Other terminals are connected to
the outputs.
Two basic buf/not gate primitives are provided in Verilog: buf, not
The symbols for these logic gates are shown in Figure

Gate Instantiations of Buf/Not Gates

[10] CO3 L1

buf b1(OUT1, IN);
not n1(OUT1, IN);
buf b1_2out(OUT1, OUT2, IN);
not (OUT1, IN); // legal gate instantiation
The truth tables for these gates are very simple. Truth tables for gates with one input
and one output are

Bufif/notif:
Gates with an additional control signal on buf and not gates are also available:
bufif1, notif1, bufif0, notif0.
These gates propagate only if their control signal is asserted. They propagate z if
their
control signal is deasserted:

The truth tables for these gates are

//Instantiation of bufif gates.
bufif1 b1 (out, in, ctrl);
bufif0 b0 (out, in, ctrl);
//Instantiation of notif gates
notif1 n1 (out, in, ctrl);
notif0 n0 (out, in, ctrl);

3 (a) Write Verilog HDL program of 4-bit synchronous up counter.
module counter(Q , clock, clear);
output [3:0] Q;
input clock, clear;
reg [3:0] Q;
always @(negedge clock)
begin
if (clear)
Q <= 4'd0;
else
Q <= Q + 1;
end
endmodule

[06] CO3 L3

 (b) Write Verilog HDL program of 4:1 mux using If-else statement.
module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);
output out;
input i0, i1, i2, i3;
input s1, s0;
reg out;
always @(s1 or s0 or i0 or i1 or i2 or i3)
begin
if(s1==0 && s0==0)
i0=1’b1;
else if(s1==0 && s0==1)
i1=1’b1
else if(s1==1 && s0==0)
i2=1’b1;
else if(s1==1 && s0==1)
i3=1’b1;
end
endmodule

[04] CO3 L3

4. Explain genvar, generate statement with syntax and an example.
Generate statements allow Verilog code to be generated dynamically at elaboration
time before the simulation begins. This facilitates the creation of parametrized
models. Generate statements are particularly convenient when the same operation or
module instance is repeated for multiple bits of a vector, or when certain Verilog
code is conditionally included based on parameter definitions.
Generate statements allow control over the declaration of variables, functions, and
tasks, as well as control over instantiations. All generate instantiations are coded
with a module scope and require the keywords generate - endgenerate.

[10] CO3 L1

Generated instantiations can be one or more of the following types:
• Modules
• User defined primitives
• Verilog gate primitives
• Continuous assignments
• initial and always blocks
Generated declarations and instantiations can be conditionally instantiated into a
design.
Generated variable declarations and can be referenced hierarchically.
Example:
module bitwise_xor (out, i0, i1);
parameter N = 32;
output [N-1:0] out;
input [N-1:0] i0, i1;
genvar j;
generate for (j=0; j<N; j=j+1) begin: xor_loop
xor g1 (out[j], i0[j], i1[j]);
end
endgenerate
endmodule

5 (a) Declare a register called oscillate. Initialize it to 0 and make it toggle every 30
time units. Do not use always statement (Hint: Use the forever loop).
reg oscillate;
initial
begin
oscillate = 1’b0;
forever #30 oscillate = ~ oscillate;
end

[05] CO3 L3

 (b) Write gate level description to implement function 𝒚 = 𝒂. 𝒃 + 𝒄, with 5 and
4 time units of gate delay for AND and OR gate respectively.
module D (out, a, b, c);
output out;
input a,b,c;
wire e;
and #(5) a1(e, a, b); //Delay of 5 on gate a1
or #(4) o1(out, e,c); //Delay of 4 on gate o1
endmodule

[05] CO3 L3

6. Use gate level description of Verilog HDL to design 4 to 1 multiplexer. Write
truth table, top-level block, logic expression and logic diagram. Also write the
stimulus block for the same. [10]

CO3 L3

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);
output out;
input i0, i1, i2, i3;
input s1, s0;
wire s1n, s0n;
wire y0, y1, y2, y3;
not (s1n, s1);
not (s0n, s0);
and (y0, i0, s1n, s0n);
and (y1, i1, s1n, s0);
and (y2, i2, s1, s0n);
and (y3, i3, s1, s0);
or (out, y0, y1, y2, y3);
endmodule

Stimulus for Multiplexer

module stimulus;
reg IN0, IN1, IN2, IN3;
reg S1, S0;
wire OUTPUT;
mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0);
initial
begin
IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0;
#1 $display("IN0= %b, IN1= %b, IN2= %b, IN3=
%b\n",IN0,IN1,IN2,IN3);
S1 = 0; S0 = 0;
#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0,
OUTPUT);
S1 = 0; S0 = 1;
#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0,
OUTPUT);
S1 = 1; S0 = 0;
#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0,
OUTPUT);
S1 = 1; S0 = 1;
#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0,
OUTPUT);
end
endmodule

7. A full subtractor has three l-bit inputs x, y, and z (previous borrow) and two 1-
bit outputs D (difference) and B (borrow). The logic equations for D and B are
as follows:

Write the full Verilog description for the full subtractor module using data-
flow modeling, including I/0 ports (Remember that + in logic equations
corresponds to a logical ‘or’ operator (|) in dataflow). Instantiate the
subtractor inside a stimulus block and test all eight possible combinations of x,
y, and z.

module full_subtractor(output B, D, input x, y, z);
assign D = (~x & ~y & z) | (~x & y & ~z)| (x & ~y & ~z) | (x & y & z);
assign B = (~x & y) | (~x & z)| (y & z);
endmodule

Stimulus:
module stimulus;
reg x, y;
reg z;
wire D, B;
full_subtractor FS (B, D, x, y, z);
initial
begin [10]

CO3 L3

$monitor($time," x= %b, y=%b, z= %b, --- B= %b, D=
%b\n",x, y, z, B, D);
end
initial
begin
x = 0; y = 0; z = 0;
#5 x = 0; y = 0; z = 1;
#5 x = 0; y = 1; z = 0;
#5 x = 0; y = 1; z = 1;
#5 x = 1; y = 0; z = 0;
#5 x = 1; y = 0; z = 1;
#5 x = 1; y = 1; z = 0;
#5 x = 1; y = 1; z = 1;
end
endmodule

8. With syntax explain conditional, branching and loop statements available in
Verilog HDL behavioral description.

Conditional statements are used for making decisions based upon certain conditions.
These conditions are used to decide whether or not a statement should be executed.
Formal Syntax Definition.
//Type 1 conditional statement. No else statement.
//Statement executes or does not execute.
if (<expression>) true_statement ;
//Type 2 conditional statement. One else statement
//Either true_statement or false_statement is evaluated
if (<expression>) true_statement ; else false_statement
;
//Type 3 conditional statement. Nested if-else-if.
//Choice of multiple statements. Only one is executed.
if (<expression1>) true_statement1 ;
else if (<expression2>) true_statement2 ;
else if (<expression3>) true_statement3 ;
else default_statement ;
Conditional Statement Examples
//Type 1 statements
if(!lock) buffer = data;
if(enable) out = in;
//Type 2 statements
if (number_queued < MAX_Q_DEPTH)
begin
data_queue = data;
number_queued = number_queued + 1;
end
else
$display("Queue Full. Try again");
//Type 3 statements
//Execute statements based on ALU control signal.
if (alu_control == 0) [10]

CO3 L1

y = x + z;
else if(alu_control == 1)
y = x - z;
else if(alu_control == 2)
y = x * z;
else
$display("Invalid ALU control signal");
Multiway Branching
The keywords case, endcase, and default are used in the case statement..
case (expression)
alternative1: statement1;
alternative2: statement2;
alternative3: statement3;
...
...
default: default_statement;
endcase

Each of statement1, statement2 , default_statement can be a single statement or a
block
of multiple statements. A block of multiple statements must be grouped by
keywords
begin and end. The expression is compared to the alternatives in the order they are
written. For the first alternative that matches, the corresponding statement or block
is
executed. If none of the alternatives matches, the default_statement is executed.
reg [1:0] alu_control;
...
...
case (alu_control)
2'd0 : y = x + z;
2'd1 : y = x - z;
2'd2 : y = x * z;
default : $display("Invalid ALU control signal");
endcase
There are two variations of the case statement. They are denoted by keywords,
casex and
casez.
• casez treats all z values in the case alternatives or the case expression as don't
cares. All bit positions with z can also represented by ‘?’ in that position.
• casex treats all x and z values in the case item or the case expression as don't
cares.

Loops
While Loop
The keyword while is used to specify this loop. The while loop executes until the
while expression is not true. If the loop is entered when the while-expression is not
true, the loop is not executed at all.
integer count;

initial
begin
count = 0;
while (count < 128) //Execute loop till count is 127.
//exit at count 128
begin
$display("Count = %d", count);
count = count + 1;
end
end
For Loop
The keyword for is used to specify this loop. The for loop contains three parts:
• An initial condition
• A check to see if the terminating condition is true
• A procedural assignment to change value of the control variable
integer count;
initial
for (count=0; count < 128; count = count + 1)
$display("Count = %d", count);
The initialization condition and the incrementing procedural assignment are
included in the for loop and do not need to be specified separately. Thus, the for
loop provides a more compact loop structure than the while loop. Note, however,
that the while loop is more general-purpose than the for loop. The for loop cannot
be used in place of the while loop in all situations.

Repeat Loop
The keyword repeat is used for this loop. The repeat construct executes the loop a
fixed number of times.
integer count;
initial
begin
count = 0;
repeat(128)
begin
$display("Count = %d", count);
count = count + 1;
end
end

Forever loop
The keyword forever is used to express this loop. The loop does not contain any
expression and executes forever until the $finish task is encountered.
reg clock;
initial
begin
clock = 1'b0;
forever #10 clock = ~clock; //Clock with period of 20
units
end

