

Internal Assesment Test – III

Sub:	Information Theory and Coding Sec				ECE & TCE				Code:	17EC54
Date:	18 / 11 /19	Duration:	90 r	nins	Max Marks:	50	Sem:	V	Branch:	ECE

	ANCIMED ANY EIVE EILL OHECTIONS	MARKS	OB	Е
	ANSWER ANY FIVE FULL QUESTIONS	MAKKS	CO	RBT
1	For a systematic linear block code, the parity matrix is given by $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Draw the encoding and decoding circuits.	[10]	C504.4	L2
2	Construct a standard array for (6, 3) codes namely, (000000), (001110), (010011), (011101), (100101), (101011), (110110) and (111000). Let the received codeword be (000101). Decode this codeword using this standard array and obtain the correct sequence.	[10]	C504.4	L2
3	For the (7, 4) single error correcting cyclic code, $D(x) = d_0 + d_1x + d_2x^2 + d_3x^3$. Using generator polynomial $g(x) = 1 + x + x^3$, find all possible cyclic codes in non-systematic and systematic form.	[10]	C504.4	L2
4	Design an encoder for the (7, 4) binary cyclic code generated by $g(x) = 1 + x + x^3$ and verify its operation using the message (1011).	[10]	C504.4	L2
5	Write a note on Golay codes and BCH codes.	[10]	C504.5	L1
6	Consider the binary convolution encoder shown in Fig. Q6. Encode the message D=101 using code tree.	[10]	C504.5	L3

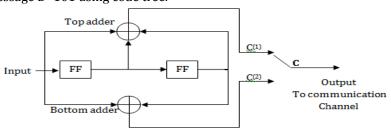
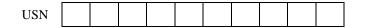
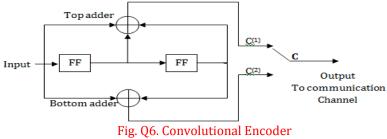



Fig. Q6. Convolutional Encoder

- Consider the (3, 1, 2) convolutional code with $g^{(1)}=(110)$, $g^{(2)}=(111)$ and $g^{(3)}=(101)$. Draw the encoder circuit. 7 [10] C504.5 L2

 - Obtain the generator Matrix.
- Consider the (3, 1, 2) convolutional code with $g^{(1)}=(110)$, $g^{(2)}=(111)$ and $g^{(3)}=(101)$, Encode the message d=1011 using, 8 [10] C504.5 L2 Time domain approach and Transform domain approach.



Internal Assesment Test – III Scheme of Evaluation

Sub:	Information Theory and Coding Sec				ECE & TCE				Code:	17EC54
Date:	18 / 11 /19	Duration:	90 r	nins	Max Marks:	50	Sem:	V	Branch:	ECE

	ANSWER ANY FIVE FULL QUESTIONS	MARKS	CO	E RBT
1	For a systematic linear block code, the parity matrix is given by $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Draw the encoding and decoding circuits.	[10]	C504.4	L2
	Encoding circuit Decoding circuit	05 05		
2	Construct a standard array for (6, 3) codes namely, (000000), (001110), (010011), (011101), (100101), (101011), (110110) and (111000). Let the received codeword be (000101). Decode this codeword using this standard array and obtain the correct sequence.	[10]	C504.4	L2
	Standard array Look up table Writing the correct vector	08 02		
3	For the (7, 4) single error correcting cyclic code, $D(x) = d_0 + d_1x + d_2x^2 + d_3x^3$. Using generator polynomial $g(x) = 1 + x + x^3$, find all possible cyclic codes in non-systematic and systematic form.	[10]	C504.4	L2
	Cyclic codes in non-systematic form Cyclic codes in systematic form	05 05		
4	Design an encoder for the $(7, 4)$ binary cyclic code generated by $g(x) = 1 + x + x^3$ and verify its operation using the message (1011). Encoding circuit	[10] <i>05</i>	C504.4	L2
	Encoding the message	05		
5	Write a note on Golay codes and BCH codes. Note on Golay codes Note on BCH codes	[10] 05 05	C504.5	L1
6	Consider the binary convolution encoder shown in Fig. Q6. Encode the message D=101 using code tree.	[10]	C504.5	L3

	Drawing the code tree using either state transition	5		
	table or state diagram Obtaining $C = [11\ 10\ 00\ 10\ 11]$	5		
7	Consider the (3, 1, 2) convolutional code with $g^{(1)}=(110)$, $g^{(2)}=(111)$ and $g^{(3)}=(101)$. Draw the encoder circuit.	[10]	C504.5	L2
	Obtain the generator Matrix. Encoder circuit	5		
	Generator matrix $[G]_{LXn(L+m)}$	5		
8	Consider the (3, 1, 2) convolutional code with $g^{(1)}=(110)$, $g^{(2)}=(111)$ and $g^{(3)}=(101)$, Encode the message $d=1011$ using, Time domain approach and Transform domain approach.	[10]	C504.5	L2
	Obtaining $C = [111\ 110\ 100\ 001\ 101\ 011]$	5		
	Obtaining $C(x) = 1 + x + x^2 + x^3 + x^4 + x^6 + x^{11} + x^{12} + x^{14} + x^{16} + x^{17}$	5		

For a Systematic Preau block Code, the pautity matrix is given by
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 draw the encoding & decoding Circuits.

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

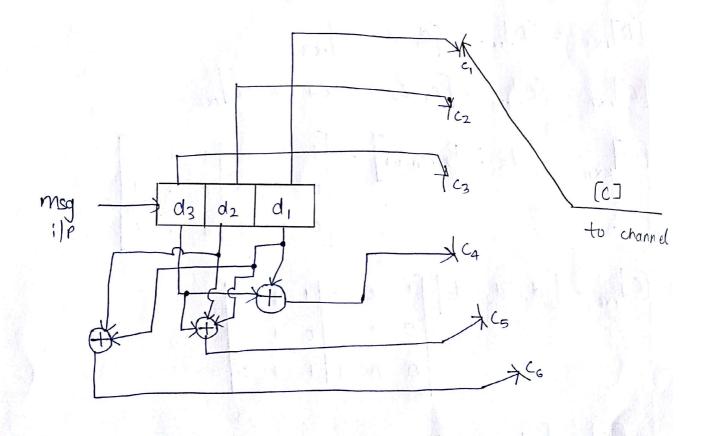
$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

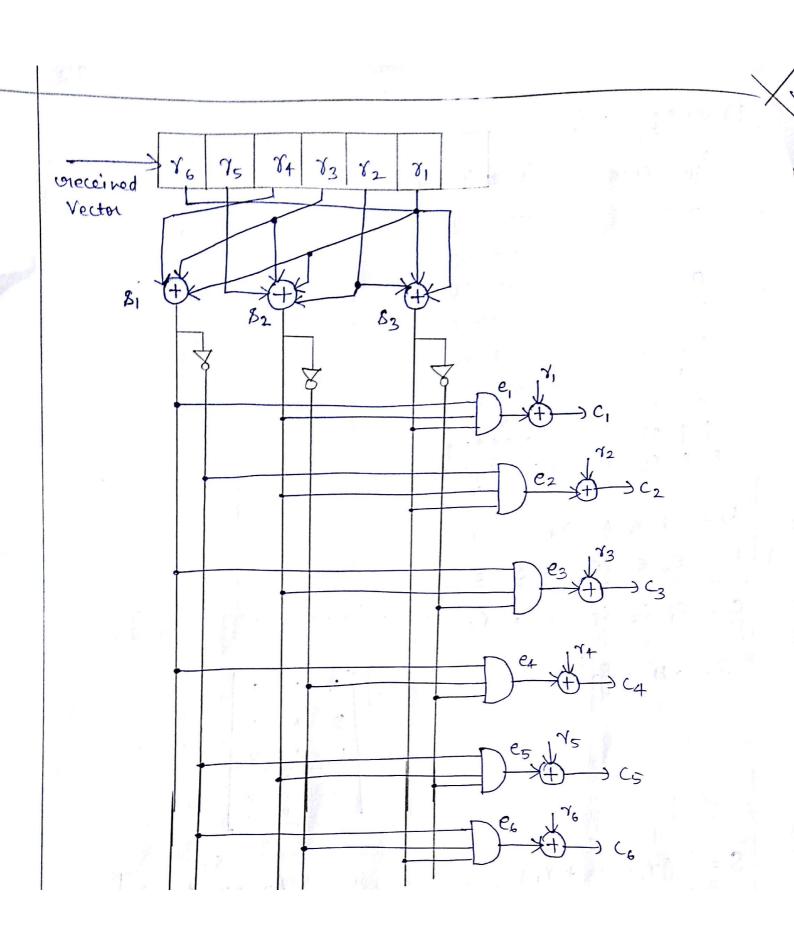
$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$


$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$


$$\Rightarrow P = \begin{bmatrix} 1$$

1					717 . 511	A. S. Mills	1000		-
	ms	}				CW		er key je 'e	
d,	d_2	d ₃	C ₁	C2	C3	C4	C5	CG	1000
			di	d,	ds	(d1+d3)	(d,+d2+d3)	(d,+d2)	
O	0	0	0	0	0	0	0	0	
0	0	i Norman	0	0	Į.	1	1	0	
0	L	0	0	1	O	0	1 7 1 7		- 600
0	().	1	0	1	1	1	O	A 1	
l	Õ	0	1	0	0	1	1		
1	0	1	1	0	1	0	0	D	
1	1	0	1	1	0	LEXE!	0	0	
1	1	1	1	1	1	0	N Line Service		

Encoding ckt 1-

			C)
	Decoding Ckt i		
	Syndrome	Co-set leader	
	000	000000	
	111	100000	
	011	010000	38
	110	001000	
	100	000100	
	010	000010	
	001	000001	
		$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	
	F1 F2 F3	e, e2 e3 e5 ec	
	R = 7, 72 83 7	4 75 Y.	
+			
	$C = C_1 C_2 C_3 C$	4 (5 C ₆	
	S= RHT = Tr.	7 ₂ 7 ₃ 7 ₄ 7 ₅ 7 ₆ 1 1 1	
		i i o	
		0 0 0	
		Lo	
	S1	S	
	S= (7, + 73+	γ_{+}) $(\gamma_{1} + \gamma_{2} + \gamma_{3} + \gamma_{5}) (\gamma_{1} + \gamma_{2} + \gamma_{3} + \gamma_{5})$	7.17
			(6)
	e1 = 8,8283	A source of the	377. 331
	$e_2 = \overline{\beta}, \delta_2 \delta_3$	ef proceeding support to 1200	
		Brown His mark in the May 1991 Brown is	7/0/3/2/1 1/1)
	e3 = 8, 82 83		8/11 1/2
	e4 = 8, \$2 B3		extension (1)
	e5 = 8, 82 83		Yang Ang
	e6 = 8, 82 82		TANK IN

0 0

For the (4.4) Single Error Correcting Code, $D(n) = d_0 + d_1 x + d_2 x^2 + d_3 x^3$. Using generator polynomial $g(n) = I + x + x^3$, find all plessible Cyclic Codes in Non-symeto systematic & Systematic form.

Non-symphystematic form (n,k) = (7,4) $g(n) = 1 + x + x^{3}$

WKT
$$g(x) = g_0 + g_1 x^1 + g_2 x^2 + g_3 x^3$$

 $g_0 = 1$; $g_1 = 1$; $g_2 = 0$; $g_3 = 1$
 $V(x) = D(x)g(x)$
 $= (d_0 + d_1 x + d_2 x^2 + d_3 x^3)(1 + x + x^3)$
 $= d_0 + d_1 x + d_2 x^2 + d_3 x^2 + d_3 x^4 + d_0 x + d_1 x^2 + d_2 x^3 + d_3 x^4 + d_0 x^3 + d_1 x^4 + d_0 x^5 + d_3 x^6$

 $d_0 + (d_0 + d_1)x + (d_1 + d_2)x^2 + (d_0 + d_2 + d_3)x^3 + (d_1 + d_3)x^4 + d_2x^5 + d_3x^6$

Since K = H# Valid i/p $Comb^n = a^k = a^4 = 16$

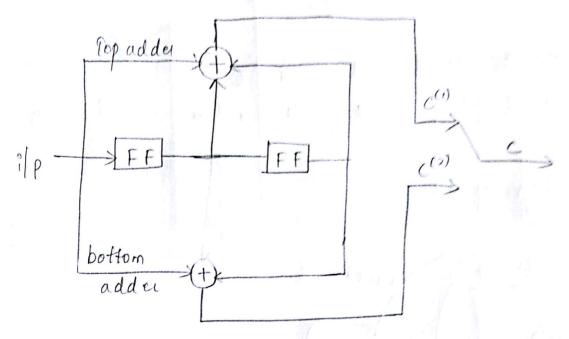
			47.1							
m	92	4			Cox	dewor	d (c	w)	14.5	
do	d,	da	d_3	Vo		V2	V_3	V4	V5	VG
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0		8	0	1
0	0		0	0	0	1		O	ι	0
0	0	1	, L	0	O'	01	0	-1	- 1	1
0	. 1	0	0	0	g H	1	0	i	0	Ö
0	l si	0	t	0		ı	1	0	0	V_{p}
0	l	l	0	0	1	0	1	l	1 0	O
0	1	1	1	0	1	0	0	0	1	1
1	0	0	0	l		0	1	O	O	0
1	0	0	1	131	1 2	0	I	1	0	^A 1 ^A
1	0	I	0	1	1	I	D	0	t	D'
1	0	l	1	1	1	1	l	l	, 1)
1	1	D	0	l	D	l	1		0	0
1	1	D	F	ι	O	1	0	0	0	1
	1	1)	0	1	0	0.	Q	1	1	0
1	l	L	1	1	0	0	T.	0	l	1

1	msq			3		C	w			1.		17	4
do	d,	d_2	d ₃	V_{o}	V,	V ₂	Vz	V4	V5	V ₆		537	1
D	0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	0	t	0	0	0	1		247	
0	0	l	0	t	- [1	0	0	l	ð			
0	0	t	1	0	1	0	0	0	l	1	Achille C		
0	l	0	0	0	1	1	0	t	0	0	B3 :		
0	1	0	1	(L	0	0	l,	0	10:	95		
0	1	1	0	1	0	0	0	1	ı	O			
0	1	1	t	0	0	ť	1 10	ì	1	1	b		
1	0	0	O	1	() Is	4 13		0		0			
1	0	D	1	0	1	1	t	C		1			
l	0	1	D	0	0	1	1	0	t	0			
1	0	1	11	1	0	0	1.4.	0) t	1			
ı	l	0	0	1	D	1	1	l	0	0		0 1	
ì	l _x	0		0	٥	0	- J		(0		. //	pr)	
I	1	1	D	0		0	ا رو		, J. I.	0	ا مر ا		
1	1	1	1	1	0	1		6).	1 .) [1	1		

Design an encoder for the (4,4) BCC generated by $g(\pi) = 1 + \chi + \chi^3 \in \text{Verify is operation using the}$ The mag (1011)

Ans $g(n) = 1 + \chi + \chi^3$ $g(n) = 1 + \chi + \chi^3$

	Number of shifts	Input D	, a	ft Regis Contents R ₁			nainder ts → R
- [Initialisation						
	is in position-		0	0	0		-
1	turned	ON					
1	1	1	1	1	0	* * * * * * * * * * * * * * * * * * * *	-
	2	1	1	0	1 .		-
-	3	0	1	0	0		-
1.	4	1	1	0	0		_
1	Switch S move	es to position-2					
	and gate is to						
	5	X	0	1	. 0		0
1	6	\mathbf{X}	0	0.	1		0
	7 1	X	0	0	0		1


Should a Note on Golay Codes & BCH Codes.

And Golay Code: - It is a (23,12) binary Code Capable of Correcting upto 3 Errors in a block of 23 bib:

It is a perfect Binary Code because of Saliefies the Hamming bound with Equality Sign for t=2 $2^{n-k} \geq \sum_{i=0}^{t} r_{C_i}$

It can be characterised as 1) No of code words (n) = 23 a) no of msg | data bis (k) = 12 3) No of parity bits (n-k)=11 4) Minimon distance (dnin) = 7 5) Ecc (t) = 3The generated polynomial is Obtained from $x^n + 1 = x^{23} + 1$ $= (x+1) g_1(x)g_2(x)$ Where $q_1(x) = 1 + \chi^2 + \chi + \chi + \chi^2 + \chi'^2 + \chi''$ 92(x) = 1+x+x5+x6+x7 +x9+x" BLH codey 1-It is a Sub-Set of cc Capable of Cottecting 3t Erroes. hence it is also I called as it Erroy correcting Bert Codes. for any the integer m>3, there Exists a B Code with block length $n = a^m - 1$ parity bits (n-k) < mt dnin > 2t +1 when t = Error Correcting Capability m = no g flipflop's a registers

Consider a binary Convolution Encoder Chown in fig. Q6. Encode the mag d=101 wing code tree.

Ans

$$g^{(1)} = 111 \quad g^{(2)} = 101$$

State table

No of State =
$$2^m = 2^2 = 4$$

State So SI SZ S3

BD 00 10 01 11

State transition, table in

1								7.3	
PS	BD	9/ρ	2N	BD	de	da-1	ds-2	C(1)	(2)
80	00	0	O0	00	0	0	O	0	0
				10	f	0	О	1	1
\$,	(0	0 -	82 B3	01	0	(00	1	0

Table 1												
\$2	01	0	8,	00	0	0	1 / 1 - 1	0	0		ersof s	
Sz	11	0	δ2 δ3	01	D	ľ	ľ	0	1			
Sto	ite	diag	Marm						0			
	0(00)		(1)	S	X	(01)		P				
		(So)		(100)	10(10) () (10)				ed.	
Cod	le to		(11)	(32) 00	01)	101		1		# A	
						00	80		6		Alle state	
	01		00	80	11				11	10 n		
-	1 1	-!	۵. 	15	Large F	•	- Bo - B2	01	16200 63	· & .	m 1	
ilp	æ	S	a _		O	1	- 83	- h	4 1			
0/p			Ŋ		0 1	00	t	0	11)			

Consider a (3,132) Convolutional code with q(1)=(110) $g^{(2)} = (111)\xi g^{(3)} = (101)$. draw the truder ext Obtain the generator matrix given/. (n, k, m) = (3,1,2) # 1/p=2k $q^{(1)} = 110$ $q^{(2)} = 111$ $q^{(3)} = 101$ Let a = 1011 => L=4 Encoder ckt/ rhsg + c(3) [c]= [C] (XNCL+m) = [d](XL * [G](XN(L+m) [C](x3(4+2) = [d](x4 * [G]) + X18 [C]1X18 = [d]1X4 * [G]4X18 and the Allen

$$\begin{bmatrix} G_1 \end{bmatrix} = \begin{bmatrix} g_1^{(1)} g_1^{(2)} g_1^{(3)} & g_2^{(1)} g_2^{(2)} & g_2^{(1)} g_3^{(2)} g_3^{(3)} & 000 & 000 & 000 \\ 000 & g_1^{(1)} g_1^{(2)} g_1^{(3)} & g_2^{(1)} g_3^{(2)} g_3^{(3)} & g_3^{(1)} g_3^{(2)} g_3^{(2)} & 000 & 000 \\ 000 & 000 & g_1^{(1)} g_1^{(2)} g_1^{(3)} & g_2^{(1)} g_3^{(2)} g_3^{(2)} & g_3^{(2)} g_3^{(2)} & 000 \\ 000 & 000 & g_1^{(1)} g_1^{(2)} g_1^{(2)} & g_2^{(2)} g_2^{(2)} & g_3^{(2)} g_3^{(2)} & g_3^{(2)} & g_3^{(2)} g_3^{(2)} g_3^{(2)} & g$$

$$\begin{bmatrix} G_1 \end{bmatrix} = \begin{bmatrix} 111 & 110 & 011 & 000 & 000 & 000 \\ 000 & 111 & 110 & 011 & 000 & 000 \\ 000 & 000 & 111 & 110 & 011 & 000 \\ 000 & 000 & 000 & 111 & 110 & 011 \end{bmatrix}$$

Consider the (3,1,2) Convolutional Cooles with $g^{(1)} = 110$ $g^{(2)} = 111$ $\xi g^{(3)} = 101$, Encode the mag d = 1011 using time domain q Transform domain approach.

Ans Time Domain 1

Given
$$(N, K, m) = (3,1,2)$$

 $g^{(1)} = 110$ $g^{(2)} = 111$ $g^{(3)} = 101$
 $d = 1011 \implies L = 4$
 $[C]_{1\times5(4+2)} = [d]_{1\times4} * [G]_{4\times3(4+2)}$

Of from Middle adder
$$= e^{(2)}(x)$$

 $e^{(2)}(x) = d(x) * f^{(2)}(x)$
 $= (1 + x^2 + x^3)(1 + x + x^2)$
 $= 1 + 4 x^2 + x^3 + x^4 + x^5$
 $= 1 + x^2 + x^3 + x^4 + x^5$
 $= 1 + x^2 + x^3 + x^{15} = x + x^4 + x^{16}$
 $e^{(2)}(x) = x [1 + x^3 + x^{15}] = x + x^4 + x^{16}$
 $e^{(2)}(x) = d(x) * g^{(2)}(x)$
 $= (1 + x^2 + x^3)(1 + x^3)$
 $= 1 + x^2 + x^3$
 $= 1 + x^3 + x^4 + x^5$
 $= 1 + x^3 + x^4 + x^5$
 $= 1 + x^3 + x^4 + x^5$
 $= 1 + x^3 + x^4 + x^{15} = x^2 + x^{11} + x^{14} + x^{14}$
 $e^{(2)}(x) = e^{(1)}(x) + x^{(2)}(x) + x^2 e^{(2)}(x)$
 $= 1 + x^3 + x^4 + x^{12} + x + x^4 + x^{16} + x^2 + x^{11} + x^{14} + x^{14}$
 $e^{(2)}(x) = e^{(1)}(x) + x^{(2)}(x) + x^2 + x^4 + x^{16} + x^2 + x^{11} + x^{14} + x^{14}$
 $e^{(2)}(x) = e^{(1)}(x) + x^4 + x^{12} + x^4 + x^4 + x^{16} + x^2 + x^{11} + x^{14} + x^{14}$
 $e^{(2)}(x) = e^{(1)}(x) + x^4 + x^{12} + x^4 + x^4 + x^{16} + x^2 + x^{11} + x^{14} + x^{14}$
 $e^{(2)}(x) = e^{(2)}(x) + x^4 + x^4 + x^4 + x^{16} + x^2 + x^{11} + x^{14} + x^{14}$
 $e^{(2)}(x) = e^{(2)}(x) + x^4 + x^4 + x^4 + x^{16} + x^2 + x^{11} + x^{14} + x^{14}$
 $e^{(2)}(x) = e^{(2)}(x) + e^{(2)}(x)$