

			Internal Assesr	ment Test –	2					
Sub: Mechanics of Materials						Code: 18ME32				
Date: 15/10/2019										
Answer any two questions from part A and one question from part B. Good luck!										
PART A					Marks	OBE				
							ME (A,B)	RBT		
1		shear force diagra wn in fig. 1.	40KN	10 KN/W	20	[20]	CO4	L3		
2	beam sho	shear force diagra wn in fig. 2 indicatin	ang the principal of th		2 8 KN/1	[20]	CO4	L3		
3	i) Norr inclii ii) Angl iii) Max iv) Max v) Verii	is subjected to stremal stress, tangentiated plane. The of obliquity. Imum and minimum and	al stress and re n normal stress a shear stress ar y Mohr's circle r	and their lond their lond their loomethod.	ess acting on the ocations.	[10]	CO2	L3		

- 4 An element is subjected to stress conditions as shown in fig. 4. Using Mohr's circle method find:
- [10]
- i) Normal stress, tangential stress and resultant stress acting on the inclined plane.
- ii) Maximum and minimum principal stress and their locations.
- iii) Maximum and minimum shear stress and their locations.

Fig 4

An element is subjected to stress conditions as shown in fig. 5. Find [10] analytically:

- i) Maximum and minimum normal stress and their locations.
- ii) Maximum and minimum shear stress and their locations.
- iii) Normal stress acting on shear stress plane.

Fig 5

5

To And reaction at supports (PB & RD)

Take moments about B

-. RB = 40KN

$$R_{D} \times 4 - 40 \times 2 - (10 \times 2)(\frac{2}{5} + 2) - 20 \times 6 + (10 \times 2)(\frac{2}{2}) = c$$
 $R_{D} \times 4 + (10 \times 2)(\frac{2}{2}) = 40 \times 2 + (16 \times 2)(\frac{2}{2} + 2) + 20 \times 6$
 $R_{D} \times 4 = 80 + 60 + 120 - 20$
 $R_{D} = 60 \times N$

Total load = $R_{B} + R_{D}$
 $R_{B} + 60 = (10 \times 2) + 40 + (10 \times 2) + (20)$

```
Shear force diagram
SF at A, FA = 0
SF at B, FB = -10 X2 = -20 EN
SF at B, FB = -20+40 = +20KN
       [ Sudden variation due to RB]
   at CIFC=+20KN (Shear force remains constant butween Bande)
 SF at (Fc=+20-40
       [Sudden variation due to point local]
SF at $0, FD= 20 - 10 x2
            = - 40 KN
SF at D, FD=40 +60
        [ Sudden variation due to Point Load]
shear force remains constant between D' and C'
      SF at c , Fc = +20KN
Bending moment diagram
 Bm at A, MA = D
Bm at B, MB = - (10x2)(2/2) = - 20 KNm
Bm atc, Mc = -(10x2)(2/2+2) + RBX2 = -60+80
                                             = +20 KNm
Bm at D, MD = - (10 x2) (2/2+4) + RB x4 - U0 x2 - (10 x2)(2/2)
             = -100 + 160 - 80 - 20
              = - 40 KNm
 Bm at E, ME = - (10x2)(2/2+6)+RBX6-40x4-(10x2)(2/2+2)
                                             + PEX2
                = -140 + 240 - 160 - 60 + 120
```

= 0

Point of contraflexume

Bm at G, MG =
$$-20(4+2) + Roy - (104)(4/2)$$
 $0 = -54^2 + 404 - 40$
 $54^2 - 404 + 40 = 0$
 $9) 4^2 - 994 + 8 = 0$
 $= +8 \pm \sqrt{8^2 - 488}$
 $= 2x1$
 $\therefore 4 = 1.171m$

Q. NO 2:

To find Reactions at supports (RA & RB).

Take moments about A

RBX10= (2x4)(4/2)+6x4+3x6+(3x2)(2/2+10) =0

- . RB = 12.4 KN (Ang)

Total load = RA+RR

RA+12.4: (2×4)+6+3+(3×2)

: . RA = (0.6 KN CANE)

Shears torce diagram (SFD)

S.F at A , FA = + RA = + 10.6KN

S.F at D, FB = RA - 2x4 = 2.6KN

S.F at D. FD = 2.6-6 = -3.4 KN Esudden variation due to

Point load at D]

Shear torce remains constant between Dand E

S. F at E, FE =- \$3.4 KN.

S.F ad E, FE = - 3.4 - 3 = -6.4 KN

Csudden variation due to Point load

OF E]

shear-bree remain comtant between E and B

S. F at B, FB = - 6.4 EN

S. F at B, FB = - 6.44-12.4 = 6 KD

[Sudden variation due to RB]

S. F atc, Fc = 6 - 3x2 = 0

Bending moment diagram (BMD) B. m at A, MA = 0 B. m at B, MD = RAX4 - (2X4)(4/2) = +26.4 KNm B.m at E, ME = RAX6- (2X4)(4/2+2) - 6X2 = +19.6 KNm Bm at B, MB= RAX 10 - (2x4) (4+6) - 6x6-3x4=-6KNm B.M atc, Mc = 0 RAXI2-(2X4)(4/2+8)-6x8-3x6+ RBX2-(3x2)(2/2)=0 Point of contrallexure: Bending moment at F, MF= - (3x2) (x-2/2) + RB (x-2) D = -6x + 6 + 12.4x - 24.80=+6.4x - 18.8 6.42 = 18.8 .. K = 18.8 .. K = 2,9375m

Q. NO 3

五万万

elermal cerric acting on inclined plane

Tongential or Shear strees acting on the inclined plane

(2) Angle of obliquity

(3) Max. normal stress or Major principal Stress

$$5_1 = \frac{5_2 + 6_4}{2} + \sqrt{\left(\frac{6_2 - 6_4}{2}\right)^2 + \left(\frac{2}{2}\right)^2} + \frac{2}{2}$$

$$= \frac{80 - 100}{2} + \sqrt{\left(\frac{80 + 100}{2}\right)^2 + \left(\frac{2}{2}\right)^2}$$

Min. normal Stress or Minor Principal Stress

Location of principal planes:

$$\tan 20 = \frac{2 \pi xy}{6x - 6y}, \quad 0 = \frac{1}{2} \tan^{-1} \frac{2 \pi xy}{6x - 6y}$$

$$= \frac{1}{2} \tan^{-1} \frac{2(-50)}{80 + 100}$$

$$\therefore \quad 0 = \frac{-14.5273}{80 + 90} = \frac{9}{2} = \frac{14.5273}{490} = \frac{75.47270}{100}$$

(4) Max and min shear stress

Tmax or Truin =
$$\pm \sqrt{\left(\frac{5x-0y}{2}\right)^2 + \frac{7y}{2}}$$

= $\pm \sqrt{\left(\frac{80+100}{2}\right)^2 + (-50)^2}$
= ± 102.956 Nhmm²

(1) The truin =
$$\frac{1}{2}$$
 $\frac{(02.956 \times 10^2 - 956)}{2}$

Location of shear Stress planes

$$Q_1' = Q_1 + 45^\circ = \frac{-14.5273}{45^\circ} + 45^\circ = \frac{30.4727}{120.4727}$$

From Mohr's circle:

Principal stresses: 0, = 0p x scale = 4.7x20 = 94Nlmm2

02 = 0Q x scale = 5.7x20 = 114Nlmm2

Location of principal planes: 20, = -29; 0,=-14.5° 20, = 20,+180°; 02=75.5°

Shear stresses: (max = GCX Scale = 5.2 x20 = + 104 Nhmm2 Trin = CH x Scale = 5.2 x20 = - 104 Nhmm2

Location of shear stressplanes: 20, = 20, +90°; a, = 30.5°

2021 = 20, +270°; 62'= 120.5°

Hormal Strell on inclined plane: On = OK × Scale

= 2.5 × do = -50N/mm²

Tangential strell: Ot = JK×Scale = -4.8×20= -96N/mm²

Resultant Strell: OR = OJ×Scale = 5.4×20= 108N/mm²

Q. 4. Data: $5z = -100 \, \text{N/mm}^2$; $5y = -50 \, \text{N/mm}^2$, $7xy = +25 \, \text{N/mm}^2$. $0 = 30^\circ \, \text{CCCN}$.

From Monr's circle,

- (1) Normal Strees, On: OK x Scale: G6 X10: 66 Nhum2
- (2) Tangential Streki, Ot = JKXScale z-3.4×102 -34N 1mm²
- (3) Resultant Strell, OR = OJX Stale = 7-42×10 = 94.2 Nhmm2
- (a) Angle of obliquity \$= Jok = -27.4. (CM)

9.5

Dala: Ox = 32 MPa; Gy = 80 MPa; Txy = -32 MPa

(1) Major principal stress loss max. normal Stress

Minor principal stress @ mini. normal stress

$$\frac{\sigma_2}{2} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \sigma_{xy}^2}$$

$$= \frac{80 + 32}{2} - \sqrt{\frac{80 - 32}{2}\right)^2 + (-32)^2}$$

. . Oz : 16 Nmm2

Location of principal planes:

(P) That or Thin :
$$\frac{\sigma_1 - \sigma_2}{2} = \frac{9.6 - 16}{2} = \frac{400 \text{ hmm}^2}{2}$$

Location of shear stress planes:

(3) Mormal Strew acting on Shear Stress plane.

4 marto 31 2 & .