|‘|‘|‘|‘|‘ E:CMRlT

USN ‘
* Gl i TITUTE OF THOWmCLOCY, BIMCALUEL
Internal Assessment Test 3 — Nov. 2019
Sub: | Automation & Robotics SubCode: | 17MES63 | Branch: | Mech
Date: | 19.11.2019 | Duration: | 90 min's | MaxMarks: [50 | Sem/Sec: V/A&B OBE
Answer any FIVE Questions MAREKS | CO |EBT
1 Briefly explain the three levels of robot programming [10] cos | L1
2 Discuss briefly about the various requirements of Fobot programming language [10] cos | L1
3 List and explain the problems pertaining to Robot Programming Languages [10] cos | L1
4 Write short notes on OLP systems. [10] cos| L1
5 Explain the varions parameters to be considered while designing OLP systems. [10] cos| L1
6 Write short notes on automatic subtasks in OLP systems [10] cos| L1
Solutions Key
Q.No Solution

Early robots were all programmed by a method that we will call teach
by showing, which involved moving the robot to a desired goal point
and recording its position in a memory which the sequencer would read
during playback. During the teach phase, the user would guide the robot
by hand, or through interaction with a teach pendant. Teach pendants
are hand-held hutton boxes which allow control of each manipulator
Joint or of each Cartesian degree of freedom. Some such controllers
allow testing and branching so that simple programs involving logic can
be entered. Some teach pendants have alphanumeric displays and are
approaching hand-held terminals in comnplexity. Figure 12.1 shows an
operator using a teach pendant to program a large industrial robot.

Explicit robot programming languages

With the arrival of inexpensive and powerful computers, the trend has
has been increasingly toward programming robots via programs written
i computer programming languages. Usnally these computer program-
nung languages have special features which apply to the problemns of
programming manipulators and so are called robot programming
languages (RPLs). Most of the systems which come equipped with
a robot programming language have also retained a teach-pendant style
interface as well.

Robot programmning |anguages have taken on many forms as wel).
We will split them juto three categories as fallows:

conirol language, and as a general computer language it was quite
weak. For example, it did not support fioating-point numbers or
character strings, and subroutines could not pass arguments. A more
recent version, VAL II, now provides these features [2|. Another
example of a specialized manipulation language is AL, developed at
Stanford University [3).

2. Robot library for an existing computer language. These robot
programming languages have been developed by starting with a
popular commputer language (e.g., Pascal} and adding a library of
robot-specific subroutines. The user then writes a Pascal program
making use of frequent calls to the predefined subroutine package for
robot-specific needs. Examples include AR-BASIC from American
Cimflex [4] and Robot-BASIC from Intelledex [5], both of which are
essentially subroutine libraries for a standard BASIC implementa-
tion. JARS, developed by NASA's Jet Propulsion Laboratory, is an
example of such a robot programming Janguage based on Pascal [6].

3. Robot library for a new general-purpose language. These
robot programming languages have been developed by first creating
a new general purpose language as a programming base, and then
supplying a library of predefined robot-specific subroutines. An
example of such a robot programming language is AML developed
by IBM [7]. The Robot programming langnage KAREL, developed
by GMF Robotics (8], is also in this category, although the language
1s quite simular to Pascal.

Task-level pregramming languages

The third level of robot programming methodology is embodied in
task-level programming languages. These are languages which allow
the user to command desjred subgoals of the task directly, rather than
to specify the details of every action the robot is to take. In such a
system, the user is able to include instructions in the application program
at a significantly higher level than in an explicit robot programming
language. A task-level robot programming system must have the ability
to perform many plaoning tasks automatically. For example, if an
instruction to “grasp the boit” is issued, the system must plan a path of

the manipulator which avoids collision with any surrounding obstacles,
autoruatically choose a good grasp location on the holt, and grasp it. In
contrast, in an explicit rohot programming language, all these choices
must he made by the programiner.

The horder hetween explicit rohot prograinming languages and task-
level programining languages is quite distinct. Incremental advances are
heing made to explicit robot programming languages which help to ease
programming, hut, these enhancements cannot he counted as components
of & task-level programming systemn. True task-leve] programming of
manipulators does not exist yet hut is an active topic of research [9]. [10].

World modeling

Since manipulation programs must by definition involve moving objects
in three-dimensional space, it is clear that any robot programning
language needs a means of describing such actions. The most common
element of robot programrming languages is the existence of special
geometric types. For example, types are introduced which are used
to represent joint angle sets, ag well as Cartesian positions, orientations,
and frames. Predefined operators which can manipulate these types often
are available. The “standard frames” introduced in Chapter 3 might
serve ag & possible model of the world: All motions are described as tool
frame relative to station frame, with goal frames being constructed from
arbitrary expressions involving geometric types.

Given a robot programming envigopment which supports geometric
types, the robot and other machines, parts, aid fixtures can be maodeled
by defining named variables agsociated with each object of interest.
Figure 12.3 shows part of our example workeell with frames attached
in task-relevant locations. Bach of these frames would be represented
with a variable of type “frame” in the robot program.

rd

¥ | Feeder |

| Pin-grasp |

1 Fintupe }

{ Table }

M
L |

TGURE 12.3 Often a workcell is modeled only by a set of frames which
we attached to relevant objects.

of the objects are not part of such a world mode], and neither are
surfaces, volumes, masses, or other properties. The extent to which
objects in the world are modeled is one of the basic design decisions
made when desiging a robot programming system. Most present-day
systems support only the style just described.

Motion specification

A very basic function of a robot programming language is to allow the
description of desired motions of the robot. Through the use of motion
statements in the language, the user interfaces to path planners and
generators of the style described in Chapter 7. Motjon statements allow
the user to specify via points and the goal point, and whether to use joint-
interpolated motion or Cartesian strajght-line motion. Additionally, the
user may have control over the speed or duration of a motion.

To illustrate various syntaxes for motion primitives, we will consider
the following example manipulator motions: 1) move to position “goall,”
then 2) move in a straight line to position “goal2,” then 3) move without
stopping through *vial”™ and come to rest at “goall.” Assuming all of
these path points had already been taught or described textually, this
program segment, would be written as follows.

In VAL II

mova goall
movas goall
move vial
move goald

Flow of axecution

As in more conventional computer prograrmning languages, a robot pro-
gramning system atlows the user to specify the fiow of execution. That
ig, concepts such as testing and branching, looping, calls to subroutines,
and even interrupts are generally found in robot programnung languages.

More 50 than jn nany computer applications, parallel processing
is generally important in automated workeell applications. First of all,
very often two or more robots are used in a single workcell and work
similtaneously to reduce the cycle time of the process. But even in
single-robot applications such as the one shown in Fig. 12.2, there
18 other workcell equipment which must be controlled by the robot
controller in a parallel fashion. Hepce signal and wait prirmtives are
often found in robot programming languages, and oceasionally more
sophisticated parallel execution constructs are provided (3],

Ancther frequent occurrence 15 the need to ;noniter vanious processes
with some kind of sepsor. Then, either by interrupt or through polling,
the robot systern must be able to respond to certain events which
are detected by the sensors. The ahility easily to specify such event
monitors is afforded by some robot programming languages (2], {3].

Programming environment

As with any computer langnages, a good programming environment
helps to increase programmers productivity. Manipulator programiming
is diffienlt and tends to be very interactive, with a lot of trial and error,
If the user were forced to continually repeat the “edit-compile-run” cycle
of compiled languages, productivity would be low. Therefore, most robot
prograinining languages are now interpreted so that individual language

statements can be run one at a time during program developnent

and debugging. Typical programming support such as text editors.
debuggers, and s file system are also required.

Sensor integration

An exiremely important part of robot programming has o do with in-
teraction with sensors. The system should have the minimum capability
to query touch and force sensors and use the response n if-then-else
constructs. The ability to specify event monitors to watch for transitions
on such sensors in a background mode is also very useful.

Integration with a vision system allows the vision systemn to send the
manipulator system the coordinates of an abject of niterest. For example,
in our sample application, a vision system locates the brackets on the
conveyor belt and returns to the manipulator controller their position
and orientation relative to the carera. Since the camera’s frame is known
relative to the station frame, a desired goal frame foy the manipulator
can be computed from this information.

Some sensors may be part of other equipment in the workce]l. For
example, some robot controllers can use mput from a sensor attached
to a convevor belt so that the manjpulator can grack the belt’s motion
and acquire objects from the belt as it moves [2].

Internal world model versus external reality

A central feature of a robot programming system is the world model
that is maintained internally in the computer. Even when this model
is gqmte sjmple, there are ample difficulties in assuring that it matches
the physical reality that it attempts to model. Discrepancies hetween
internal mode] and exterpal reality result in poor or failed grasping of
objects, collisions, and a host of more subtle problems.

This correspondence between internal model and the external world
must be established for the program’s initial state and must be main-
tained throughout its execution. During mitial programming or debug-
ging it is generally up to the user to suffer the burden of ensuring that the
state represented in the program corresponds to the physical state of the
workcell. Unlike more conventional programming, where only internal
variables need fo be saved and restored to reestablish a former situation,
in robot programming, physical objects must usually be repositioned.

Context sensitivity

Bottom-up programming is a standard approach to writing a large
computer program in which one develops small, low level pieces of a
program and then puts them together into larger pieces, eventually
resulting in a completed program. For this method to work it is essential
that the smal] pieces be relatively insensitive to the language statements
that precede them and that there are no assumptions concerning the
context with which these program pieces execute. For manipulator
progamming this is often not the case; code that worked rehiably when
tested in isolation frequently fails when placed in the context of the
larger program. These problems generally arise from dependencies on
manipnlator configuration and speed of motious.

Manipulator programs may be highly sensitive to initial conditions,
for example, the initial manipulator position. In motion frajectories,
the starting position will influence the trajectory that will be used for
the motion. The initial mampulator position may also infinence the
velocity with which the arm will be moving during some critical part
of the motion. For example, these statements are true for manipulators
that follow cubic spline joint space paths studied in Chapter 7. While
these effects might be dealt with by proper programming care, such
problems may not arise until after the initial language statements
have been debugged in isolation and are then joined with statements
preceding them.

Error recovery

Another direct consequence of working with the physical world is that
objects may not be exactly where they should be and lience motjons
that deal with them may fail. Part of manipulator programming involves
attempting to take this ijjto account and making assembly operations
as robust ag possible, but, even so, errors are likely; and an important
aspect of mampulator programming 18 how to recover from these errors.

Alinost any motion statement in the user's program can fail, some-
times for a variety of reasoms. Some of the more common causes are
objects shifting or dropping out of the hand, an gbject missing from
where it should be, jamming during an insertion, not being able to
locate a hole, and so on.

Off-line programming of robots offers other potential benefits which
are just beginning to he appreciated by industrial robot users. We have
discussed some of the prohlems associated with rebot programming, and
most have to do with the fact that an external, physical workeell is
being manipulated by the robot program. This makes backing up to try
different strategies tedious. Programining of robots in simulation offers
a way of keeping the bulk of the programming work strictly internal to a
computer—until the application is nearly complete. Thus, many of the
prohlems peculiar to rohot programming tend to diminish.

Off-line programming systems should serve as the natural growth
path from explicit programming systems to task level programming
systems. The simplest OLP system is merely a graphical extension
to a robot programming language, bug from there it can be extended
toward a task level programming system. This gradual extension is
accomplished by providing automated solutions to varicus subtasks as
these solutions become available, and letting the programmer use them
to explore options in the simulated environment. Until we discover
how to build task Jevel systems, the user must remain in the loop to
evaliate automatically planned subtasks and guide the development of
the application program. [f we take this view, an OLP system serves as
atl important basis for research and development of task level planning
systems, and ndeed, in support of their work many researchers have
develgped varions components of an OLP system (e.g., 3-D models and
graphic display, language postprocessors, etc.). Hence, OLP systems
should be a useful tool in reseaych as well as an ald in current industrial
practice.

User interface

Since a major motivation for developing an OLP svstem is to create
an environment that makes programming manipulators easier, the user
interface is of crucial iinportance. However, the other major motivation is
to remove reliance on use of the physical equipment during progranming.
Upon mitial consideration, these two goals seem to conflict—robots are
hard enough to program when you can see them, how can it he easier

without the presence of physical device? This question touches upon the
essence of the OLP design problen.

3-D modeling

A central element in OLP systems is the use of graphic depictions of the
simnlated robot and its workcell. This requires the robot and all fixtures,
parts, and tools in the workeell to be modeled as three-dimensional
objects. To speed up program development, it is desirable to nse any
CAD models of parts or tooling that are directly available from the CAD
system on which the original design was done. As CAD systeins become
more and more prevalent in industry, it becomes more and more likely
that this kind of geometric data will he readily available. Becanse of the
strong desire for this kind of CAD integration from design to production,
it makes sense for an OLP system to contain a CAD modeling subsvstem,
or to be itself a part of & CAD design system, If an OLP system is to
be a stand-alope system, it must have appropriate interfaces to transfer
models to and from external CAD systems. However, even a stand-alone
OLP system should have at least a simple local CAD facility for quickly
creating models of noneritical workeel] items, or for adding robot-speciflc
data to imported CAD models.

Kinematic emulation

A central component in maintaining the validity of the simulated world
15 the faithful emulation of the geometrical aspects of each simulated

manipulator. Concerning inverse kinematics, the OLF system can inter-
face to the rebot controller 1n two distinct ways, Firat, the OLD system
can replace the mverse Kinematies of the robot contraller, and always
comnmuiciate robet positions noechanisin joint space. The second
choice 18 to cornmunicate Cartesian locations to the robot cont roller anel
let the controller use the inverse kinewnatics supplied by the tnannfacturer
to solve for robot configurations. "'he second cheice is almost always
preferable cspectally as mannfaciurers begin to buld arm signature st yle
calibration into shoir robots. These calibration techmques enstomize the
mverse kinematies for each imdividual robot. In tlus case, it hecomes
desirable to commuvicate mformation at the Cartesian Jevel to robot
controllers.

Path planning emulation

In addivion to kinematic emulation for static positioning of the maaip-
Wator, an OLP system shonld aceunrately cinulate the path tnken by
the mamwpnlator in moving through space. Again, the contral problem 13
that the OLP systern needs to simulate the algorithms in the robot
controllers, and these path plannmg and execnution algorithins vary
cousiderably fromn one robot manufactnrer to another. Sinmlation of the
spatial shape of the path tiaken is nnportant for detection of collisions
betweer the robot and its environment. Simulation of the temporal
aspects of the trajectory are important in predicting the cyele times
of applications. When a robot is operating in a moving environment
(for example, near another robot) accurate simulation of the temporal
attributes of motion is necessary to accurately predict eollisions, and in
some cases to predict communication or synchronization problems such

as deadlock.
Dynamic emulation

Sunulated motion of manipulators can neglect dynamic attributes if the
OLP system does a good job of emulating the trajectory planning algo-
rithm of the controller and if the actual robot follows desired trajectories
with neghgible errors. However, at high speed or under heavy loading
conditions, trajectory tracking errors can become important. Simulation
of these tracking errors necessitates modeling the dvnainics of the
manipulator and objects which it moves, as well as the control algorithm
used in the manipulator controller. Presently practical problems exist
in obtaining sufficient information from the robot vendors to make this
kind of dynamic simulation of practical value, but in some cases dypamic
simulation can be fruitfully pursued.

Multiprocess simuiation

Somme industrial applications involve two or more robots cooperating
in the same environment. Even single robot workcells often contain a
conveyor belt, transfer line, vision systen;, or some other active device
with which the robot must interact. For this reason, it is important
that an QOLP system be able to simulate multiple moving devices and
other activities that involve parallelism. As a basis for this capability,
the underlying language in which the system is implemented should be
a multiprocessing langnage. Such an environinent makes it possible to
write independent robot control programs for each of two or more robots
i1 & single cell, and then simulate the action of the cel] with the programs
running concurrently. Adding signal and wait primitives to the language
enables the robots to interact with each other just as they might in the
application being simulated.

Automatic robot placemeni

One of the most basic tasks that can be accomplished by means of an
OLP system is the determination of the workcell layout so that the
manpulator(s) can reach all of the required workpomts. Determiming
correct robot or workpiece placement by trial and error is nore quickly
completed in a simulated world than in the physical cell. An advanced
feature which automates the search for feasible robot or workpiece
location(s) goes one step further in reducing burden on the user.
Automatic placement can be computed by direct search, or perhaps
by heuristic guided search techniques. Since most robots are mounted Hat
on the floor {or ceiling), and have their first rotary joint perpendicular

to the floor, it is generally onlv necessary to search by tesselation of
the three-dimensional space of robot base placernent. The search might
optimize some criterion or might halt npon location of the first feasible
robot or part placement. Feasibility can be defined as collision-free
ability to reach all workpoints, or perhaps given an even stronger
definjtion. A reasonable criterion to maximize might be some form of a
measure of manipulability as discussed in Chapter 8. An ymplementation
using a simjlar measure of ;nampulability hag been discussed in [11]. The
result of such an antomatic placement 38 a cell in which the robot can
reach all of its workpoints in weil-conditioned configurat,ons.

Collision avoidance and path optimization

Research on the planning of collision-free paths [12,13] and the planning
of time-optimal paths [14-16] are natural candidates for inclusion in
an OLP gystem. Some related problems which have a smaller scope,
and smaller search space, are also of interest. For example, consider
the problem of using a six degree of freedom robot for an arc welding
task whose geometry specifies only five degrees of freedom. Automatic
planning of the redundant degree of freedom can be used to avmd
collisions and singularities of the robot [17].

Automatic planning of coordinated motion

In many arc welding situations, details of the process require a certain
relationship between the workpiece and- the gravity vector to be main-
tained during the weld. This results in a two or three degree of freedom
orienting system on which the part 13 mounted operating simultanecusly
with the robot in a coordinated fashion. In such a system there may
be nine or inore degrees of freedom to coordinate. Sucly systeins are
generally programmed today using teach pendant techniques. A planning
system that could automatically svnthesize the coordinated motjons for
such a system might be quite valuable [17,18).

Force-control simulation

In & simulated world in which objects are represented by their surfaces,
it 1s possible to investigate the simulation of manipulator force-coutrol
strategies. This task involves the difficult problem of modeling some
surface properties and expanding the dynamic simulator to deal with
the constraints imposed by various contacting situations. In such an
environment 1t mght be possible to assess various force-controlled
assembly operations for feasibality [19].

Autoematic scheduling

Along with the geometric problems found in robot programming, there
are often difficult scheduling and communication problems. This is
particularly the case 1f we expand the simulation beyond a single
workeell to a group of workeells. While some discrete time simulation
systeins offer abstract simulation of such systems [20], few offer planning
algorithma. Planning schedules for interacting processes is a difficult
problem and an ares of research [21 22]. An OLP system would serve as
an 1deal test bed for such research, and would be iminediately enhanced
by any usefu] algorithms in this area.

Auiomatic assessment of errors and folerances

An OLP system might be given some of the capabilities discussed in
recent work in modeling positionimg errors sources and the effect of
data from imperfect sensors [23 24]. The world model could be made
to include various error bounds and tolerancing information, and the
system could assess the likelihood of success of varjous positioning or
assembly tasks. The system might suggest the nse and placeinent of
sensors s0 as to correct potential problems.

