

									ACC	REDITED WIT	H A+ GRADE E	BY NAAC
			Interna	1 Assessment 7	Γest :	3 - Nov. 20	19					
Sub:	CONTROL E	ENGINEERIN	NG			Sub Code:	15ME73	Bra	nch:	ME		
Date:	19/11/19	Duration:	90 min's	Max Marks:	50	Sem / Sec:	7 th /.	A & I	3		OF	
			Se	ection A (Answer	all q	uestions)			1	RKS		RBT
1	For a unity f	eedback sys	stem : G(s)	$=\frac{K(s+1)}{s(s-1)(s+6)}$					[.	[0]	CO4	L2
		rmine:		5(5 1)(5 (5)								
	i) Range of K for system to be stable.											
	ii)	Marginal	value of K.									
	iii)	Location	of roots fo	r marginal valu	ie of	K.						
2	$G(s)H(s) = \frac{1}{s}$	K(s+1)	<u> </u>						[2	20]	CO5	L2
				e for damping	ratio	= 0.6:						
	i)		op domina	•								
	ii)	Damped	natural fre	quency								
	iii)	Gain K										
			Section B (A	nswer ANY ON	E que	estion)						
3	The open loop transfer function of a certain unity feedback system is given by						[2	20]	CO4	L2		
	$G(s) = \frac{K}{s(s+2)(s+20)}$											
	S(S+2)(S+20) Construct Bode Plots and determine:											
	i) Limiting value of K for system to be stable.											
	ii)	_		nargin to be 10								
	iii)	Value of	K for phase	margin to be	50 ⁰ .							
4	For a system	G(s)H(s)=	242(s	:+5)					[2	20]	CO4	L2
	For a system $G(s)H(s) = \frac{242(s+5)}{s(s+1)(s^2+5s+121)}$ Sketch the Bode Plot and determine gain margin, phase margin, gain crossover											
				e gain margin, icy. Comment				Γ				
	riequency, p	mase crosso	ver mequen	icy. Comment	OH 81	aomiy of ti	ic system.					

CI CCI HOD

GI
$$G(S) H(S) = \frac{k(S+1)}{S(S-1)(S^2+4S+16)}$$
 $1 + G(S) H(S) = 0$
 $1 + \frac{k(S+1)}{S(S-1)(S^2+4S+16)} = 0$
 $S(S-1)(S^2+4S+16) + k(S+1) = 0$
 $S^4 + 3S^3 + 12S^2 - 16S + kS + k = 0$
 $S^4 + 3S^3 + 12S^2 + 16S + k = 0$

Routhi array.

 $S^4 = \frac{1}{3} + \frac{1}$

```
or stability,

) From s' row; k>0

ii) From s' row; \left(\frac{5a-k}{3}\right)\left(\frac{k-16}{3}-\frac{3k}{3}\right)
                  (52-K)(K-16)-9K>0
               (52k-832-k2+16k-9k)>0
                 k2-59k+832KO
  :. Roots are k>23 315 & K < 35.684
iii) From s2 row 52-k >0
                      K(53 (1991)
   0 < k < 23.315 - unstab4
23.315 < k < 35.685 - Stab4
stable
stable
```

```
2)(118) H(S) = K(S+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     open-poles at s = 0,1,-2,+3.4641, -d-3.4641
                                                                                                                                                   Characterstic equation of system

1+5(5) H(5):0
                                                                                                                                                                                                                                                                                                                                                                                           (entroid
                                                                                                                                                                                                                                                                         For S, between 0 & 1; Px+ Zx=1+0=1 (odd) RLV
                                                                                                                                                                                                                  For S3 between -00 to -1, Prizr: 2+1:3 (odd) RLV
                                                                                                                                                                                                                                          For 52 between -1 & 0; Px + Z, = 3+0 = 2 (even) RL X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  P-2 = 4-1: 3 branches= NO: of asymptodes.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Angle of asymptodes On - (29 +1) 180°
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3(5-1)(54 48+16)
                                                                            54+353+125-165+ 1(5+1)=0
   dk = (s+1) (-1) (4s3+952+245-16) + (54+353+125-165)
                                                                                                                                                                                                                                                                                                                            6A: 0+1-2-2-(-1)
                                                                                                                                                                                                                                                                                                                                                                                      ER.P of polls - ER.P of zeroes
                                                                                                    5(5-1)(52+45+16)
                                                                                                                                     K (5+1)
                                                  K = - (54+353+1252-165)
                                                                                                                                                                                                                                                                                                                                                                                                                      On: 60, Onz = 180, Ons 300.
(211)2
```

```
ZZ = 106.11
                                         5 pp = 340.89°
                                                                  - 106.11
                                                                                                                                                                                                                                                                                                                                                                                                                Routh's array.
                                                                                                                                           = 180 - +an 3.464 = 130.89°
                                                                                          90.
                                                                                                                                                                                                                                                                                                                                                                                                                                                         Characteristic equation.
                                                                                                        180^{\circ} - \tan^{-1} 3.464 = 120
                                                                                                                                                                                                                           - K2+ 59K-839 : 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             354+ 1053+2152+ 245-16
                                                                                                                                                                                          2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Valid points S=0.448, -2.26
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        S= 0.448, -2.26, -0.76+2.161, -0.76-2.11
                                                                                                                                                                                                                                                                                                                                                                                                                                    S4+353+1252-165+K5+K=0
                                                                                                                                                                                                                                                                                                     - K2+591 -838
                                                                                                                                                                       K = 23.31,
                                                                                                                                                                                                                                                                                                                                                                K-16
                                    Angle of departure: 180-234.78
                                                                                     $ 5 $ p - 5 $ z
                                                            φ= 234.78.
                                                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                    K= 35. 68 Eq 23. 21.
                                                                                                                                                                                                                                                                                                     0
+ 54.78 at -2 10-2.4641
                  - 54.78 at -2+ 3.464i
                                                                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                 C
```


	7 = (5) 5	1/			
	0	S (S+a) (S+ao)	()		
	From sta	indard for	From standard form (165) H(S) =	· 7	
		Her	Here H(S)=1.	S (S+a)(S+aO)	
		5 (2) H(8) :	K	7)	
		408	40s (\$1+1s)(1+1s)		405(1+0.55)(1+0.055)
	9 (1 m) H(1 m) =		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		where $\frac{k}{40} = A$.
			1 w (1 + 0 · S · W) (1 + 0 · 0 · 8 w)		
201	2010914 (im) 4 (im) =		ologa - 2010	2010gA - 2010g(10) - 2010g 1+(6.50)2 -2010g/1+	(6.50) -20log/1+
	3	5.0	= 2 rad/s	Wc,= 1 = 2 rad/s Wcz= 1 = 200 rad/s.	(0.050) rad/s.
	7	Range Rad/s	3/5	shope in (dB/decand)	and)
		e -1.0		-20	
		2-20		04-	
		20-08		09-	
	Phase table.	ole.			
	3	31,	(wisim)	(miso.051w)	SOR
		- tan' (100)	-tan (0.500)		
	2.0	06-	14.5-	ts. 0-	-96.28
	8.0	06-	-21.8	1 2.29	-114-09
	8	06-	1 45	1 F. S.	14.041-
	0 /	06-	- 78.69	26.76	76791
	00	06-	-84.26	551	
	100	06-	78 60	69.8±-	011:40
	8	-40	- 88.50	-40	-140

```
For phase margin to be so.
                                                                                        For gain margin to be
                                                                                                                  = 18dB
                                                                                                                                                                        pt-118 > 7
                                                                       < 25.11×40 =
                                                                                                                                                        A < 7.943
                                                                                                                                                                                                                  20 log A < 6
                                                                                                                                                                                                                                                 K < 79.81
                                                                                                                                    2010g A < 18
                                                                                                                 28dB - 10
                10gA < 1.4
1) 20 log A < 28
```


14 (0.2 W) 2 - 20109W - 0.04W) 2 S Wag= 16rad/5 A/S. Phase margin	an -	-tari (0.04 w) 4R -0.45 (24) -0.45 (24) -66.54 (177 -88 2.8° 0
7 6 6	Mow, 1 : 8.26 κ10 ⁻³ Now, 1 : 8.26 κ10 ⁻³ Now, 1 : 8.26 κ10 ⁻³ Slope (dB) dec) 20 20 40 -40 -60	+tan (0.04 w) -tan (0.04 w) 4 k 3.30 c -0.45 (1-(\frac{\pi}{\pi})) -\frac{\pi}{\pi} \left\ \frac{\pi}{\pi} \left
(s)H(s) = 48.4 (20 log of 4 (iw) H (iw) = 2016 Lorner frquuedes	Range (rad/s) 0-5 5-11 11-25 25-8	100 100 100 100 100 100 100 100 100 100

