
	USN										
--	-----	--	--	--	--	--	--	--	--	--	--

4 (b)	A stone is dropped into a well and the splash is heard after 4s. If the speed of sound in air is 340 m/s. Determine the depth of well. Take $g = 9.81 \text{m/s}^2$.	[5]	CO6	L3
5 (a)	Prove that the trajectory of a projectile is a parabola.	[4]	CO6	L3
(b)	The acceleration of a particle in rectilinear motion is defined as $a = k \sqrt{v}$, where a is acceleration in m/s ² , v is in m/s and k is a constant. Given that at time t = 2s and t = 3s the velocities are 4 m/s and 9 m/s respectively. The displacement at t = 3s is 20 m. Write the equations of motion and find the velocity, acceleration and displacement at t = 4 s.	[6]	CO6	L3
6. (a)	A bomber is flying horizontally at a speed of 300 kmph at an altitude of 150 m releases a bomb targeting a ship moving in the same direction as the ship at a constant speed of 20 m/s. How far from the ship should it release the bomb to hit the ship? Take $g = 9.81 \text{m/s}^2$.	[6]	CO6	L3
 (b) Write the equations for the following for a ball projected at an angle from the ground: (i) Time of flight (ii) Maximum height reached (iii) Range (iv) Resultant velocity at any instant 			CO6	L1
7.	Explain with a neat figure the various cross-sectional elements of a road.	[10]	CO1	L4