CMR INSTITUTE OF TECHNOLOGY

Internal Assesment Test II								
Sub: BASIC EL	BASIC ELECTRICAL ENGINEERING Cod				e: 18ELE13			
					ion: A,B,C,D,E,F,G		,E,F,G	
Note: Answer any FIVE FULL Questions								
Sketch neat figures wherever necessary. Answer to the point. Good luck!								
				Mark	s –	OBE		
					° CO	RBT		
1a Show that in a pure inductor the current lags behind the voltage by 90°. Also draw the voltage and current waveforms.				[5]	CO2	2 L2		
a 50Hz supply, the potential	A coil of power factor 0.6 is in series with 100μ F capacitor. When connected to a 50Hz supply, the potential difference across the coil is equal to potential difference across the capacitor. Find the resistance and inductance of the coil.				[5]	CO2	2 L3	
wattmeter method. Hence, obta diagram.					[10]	CO	3 L3	
3a Three similar coils each having resistance of 10Ω and reactance of 8Ω are connected in star across a 400 V, 3-phase supply. Determine (i) Line current; (ii) Total power; and (iii) reading of each of the two wattmeters connected to measure the active power.				[6]	CO	3 L4		
3b What is meant by power factor in	What is meant by power factor in an ac circuit? What is its significance?				[4]	CO2	2 L1	
-	Hz supply. Find the reading on each of the two wattmeters connected to measure the			[4]	CO	3 L4		
	Deduce the relationship between the phase and line currents of a 3-phase delta		[6]	CO	3 L3			
5a A resistance of 7 Ω is connected circuit is connected to a single	A resistance of 7 Ω is connected in series with a pure inductance of 31.8 mH and the circuit is connected to a single phase 100 V, 50 Hz, sinusoidal supply. Calculate (i) Circuit current; (ii) Phase angle; (iii) Power factor; and (iv) Power.		[5]	CO2	2 L3			
5b Show that voltage and current	Show that voltage and current in a pure resistive circuit are in phase and power consumed in the circuit is equal to product of rms value of voltage and current.		[5]	CO2	2 L2			
6a Derive the expression for power factor of the circuit.	Derive the expression for power in AC circuit in terms of voltage, current and power factor of the circuit.		[5]	CO2	2 L2			
6b Two impedances $Z_1 = (0.167 - parallel across a 100 V, 50 H and total current. Also, find the$	z ac supply. Calculate th	e curren				[5]	CO2	2 L3
7a With a neat connection dia develop the truth table indica switches.				-		[6]	COS	5 L2
7b Write short note on (i) MCB;	Write short note on (i) MCB; and (ii) Precautions against electric shock.		[4]	COS	5 L2			
earthing.	earthing.		[6]	COS	5 L2			
8b Given v(t) = 200 sin(377t) V and (i) Reactive Power; (ii) True pow			ircuit. I	Deterr	mine:	[4]	COS	5 L2

Scheme of Evaluation - IAT2. a) Derivation for pure Inductor - 4 M. Voltage + Current Wavefam - 1 M 5m 1)6) R= 19.0952 -2M - 2 m. L = 0.0811 H $\frac{-1M}{5m}$ steps 2) 90 3-9 Active power derivation 4 M. Poury factor measurement 6 M . (phasor diagram - 2m) 10 m $\begin{array}{c} 3) a \\ \vdots \\ \vdots \\ 2 \end{array} = 18.0337 A \longrightarrow 2m.$ (", p = 9.7562 KW → 2m 111, WI= 2.1249 EN -> 1m $W_2 = 7.13124 \text{ m} \rightarrow 1 \text{ m}$ 6m

2

A sound a late

ういたい 一日になる いたちないない

(5) b) fue suistive liveuit
derivation
$$\rightarrow 2m$$
.
Instantaneous poury $\rightarrow 2m$
phasor diagram $\rightarrow 1m$
(6)a)
Regivation of voltage
Custent $\int 5m$.
 $p-f$
(1099.15-j100.67)A $\rightarrow 2m$.
 $p-f$
 $f = (299.34+j^2 297.34)A \rightarrow 1m$.
 $f_1 = (299.51-j400.01)A \rightarrow 1m$.

 $los \phi = 0.9958 - 2100$

Sm

+)a) Circluit diagram
$$\rightarrow 2m$$
.
Explanation $\rightarrow 2m$
Truth table $\rightarrow 2m$
(Truth table $\rightarrow 2m$
 $\overline{6m}$
+)b) mCB $\rightarrow 2m$.
Electric shock $\rightarrow 2m$
 $4m$
8)a) i Earthing $\rightarrow 1m$.
shy Earthing sequied $\rightarrow 1m$.
plate Earthing diagram $\rightarrow 2m$.
Explanation $\rightarrow 2m$
 $\overline{6m}$
8)b) (1, $q = 400 \text{ VAR} \rightarrow 1m$.
 $(i, p = 692.811 \text{ W} \rightarrow 1m)$.
 $(ii, S = 800.015 \text{ VA} \rightarrow 1m)$
 $Step S - 21m$
 $\underline{4m}$