

Internal Assessment Test 2 - March 2021

Sub:	Engineering Physic	es Theory				Sub Code:	18PHY12	Branch:	CS/IS		
Date:	01-03-2021	Duration:	90 min's	Max Marks:	50	Sem/Sec:	I/ A,B,C,D,E,F and G			OBE	
$\frac{\text{Answer any FIVE FULL Questions}}{\text{Given: } c = 3 \times 10^8 \text{ m/s; } h = 6.625 \times 10^{-34} \text{Js; } k = 1.38 \times 10^{-23} \text{ J/K; } m_e = 9.1 \times 10^{-31} \text{kg; } e = 1.6 \times 10^{-19} \text{C}, \epsilon_0 = 8.854 \times 10^{-12} \text{F/m}}$							ARKS	CO	RBT		
1 (a)	Obtain an expre	ession for amp	litude and ph	ase of vibration of	of a bo	ody undergoin	g forced vibrati	on. [07]	CO2	L3
(b)	Calculate the peak amplitude of vibration of a system whose natural frequency is 1000Hz when it oscillates in a resistive medium for which the value of damping/unit mass (r/m) is 0.008 rad/s under the action of an external periodic force/unit mass(F/m) of amplitude 5 N/kg, with tunable frequency.						inder	03]	CO2	L3	
2 (a)	Describe the construction and working of Reddy shock tube					[06]	CO3	L3		
(b)	Define shock waves. Mention its applications.					[04]	CO3	L3		
3 (a)	Discuss the var	iation of Ferm	i factor with	temperature.				[06]	CO1	L3
(b)	Discuss any two merits of quantum free electron theory.					[04]	CO1	L2		
4 (a)	Derive the expr	ession for Fer	mi energy at	Zero Kelvin.				[05]	CO1	L3
(b)	Using the expre energy gap for a			tions show that, t	the Fe	rmi level lies	in the middle o	of the [05]	CO2	L3

PTO

. . .

. . .

-

USN

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment Test 2 – March 2021

Sub:	Engineering Physic	cs Theory		Sub Code:	18PHY12	Branch:	CS/IS/						
Date:	01-03-2021	Duration:	90 min's	Max Marks:	50	Sem / Sec:	I/ A,B,C	I/ A,B,C,D,E,F and G			OBE		
		·	Answer any Fl	VE FULL Question	<u>s</u>	·	·			CO	RBT		
Given:	$c = 3 \times 10^8 \text{ m/s};$ h	$= 6.625 \times 10^{-34}$ Js	s; $k = 1.38 \times$	10^{-23} J/K; $m_e = 9.1$	× 10 ⁻	³¹ kg; $e = 1.6 \times 1$	0 ⁻¹⁹ C,	N	IARKS				
8	E ₀ =8.854x10 ⁻¹² F/m												
1 (a)	Obtain an expression for amplitude and phase of vibration of a body undergoing forced vibration.						on.	[07]	CO2	L3			
(b)	Calculate the peak amplitude of vibration of a system whose natural frequency is 1000Hz when it oscillates in a resistive medium for which the value of damping/unit mass(r/m) is 0.008 rad/s under the action of an external periodic force/unit mass(F/m) of amplitude 5 N/kg, with tunable frequency.						nder	[03]	CO2	L3			
2 (a)	Describe the construction and working of Reddy shock tube						-	[06]	CO3	L3			
(b)	Define shock waves. Mention its applications.							[04]	CO3	L3			
3 (a)	Discuss the var	iation of Ferm	i factor with	temperature.					[06]	CO1	L3		
(b)	Discuss any two merits of quantum free electron theory.							[04]	CO1	L2			
4 (a)	Derive the expression for Fermi energy at Zero Kelvin.							[05]	CO1	L3			
(b)	Using the expression of the ex			tions show that, t	he Fe	rmi level lies	in the middle o	f the	[05]	CO2	L3		

5 (a)	What is Hall effect? Obtain an expression for the Hall coefficient.	[7]	CO1	L3
(b)	The following data are given for intrinsic germanium at 300K, $n_i=2.4 \times 10^{19}/m^3$, $\mu_e=0.39m^2v^{-1}s^{-1}$, $\mu_{h=}=0.1939m^2v^{-1}s^{-1}$. Calculate the resistivity of the sample.	[3]	CO2	L3
6 (a)	Derive the Clausius - Mossotti relation for dielectrics.	[6]	CO1	L3
(b)	An elemental solid dielectric material has polarizability $7x10^{-40}$ Fm ² . Assuming the internal field to be Lorentz field, calculate the dielectric constant for the material if the material has $3x10^{28}$ atoms/m ³ .	[4]	CO1	L3
7 (a)	Obtain the general solution for the displacement of a body undergoing damped oscillations.	[7]	CO1	L3
(b)	A linear simple harmonic oscillator has time period of 1s, what is the amplitude of oscillation if its maximum velocity is 2 m/s.	[3]	CO1	L3
8 (a)	Evaluate the energy of a free electron in Copper for which probability of occupation is 2% at 100K, given that Fermi energy for Copper is 5eV.	[5]	CO3	L4
(b)	A spring loaded with 10kg executes free oscillations at a certain frequency. Evaluate the additional mass to be added to it so that it oscillates at one-tenth of its initial frequency.	[5]	CO3	L4

5 (a) What is Hall effect? Obtain an expression for the Hall coefficient	[7]	CO1	Ι
(b) The following data are given for intrinsic germanium at 300K, $n_i=2.4 \times 10^{19}/m^3$, $\mu_e=0.39m^2v^{-1}s^{-1}$, $\mu_{h=0.1939m^2v^{-1}s^{-1}$. Calculate the resistivity of the sample.	[3]	CO2]
6 (a) Derive the Clausius - Mossotti relation for dielectrics.	[6]	CO1]
(b) An elemental solid dielectric material has polarizability $7x10^{-40}$ Fm ² . Assuming the internal field to be Lorentz field, calculate the dielectric constant for the material if the material has $3x10^{28}$ atoms/m ³ .	[4]	CO1]
7 (a) Obtain the general solution for the displacement of a body undergoing damped oscillations.	[7]	CO1]
(b) A linear simple harmonic oscillator has time period of 1s, what is the amplitude of oscillation if its maximum velocity is 2 m/s.	[3]	CO1	I
8 (a) Evaluate the energy of a free electron in Copper for which probability of occupation is 2% at 100K, given that Fermi energy for Copper is 5eV.	[5]	CO3]
(b) A spring loaded with 10kg executes free oscillations at a certain frequency. Evaluate the additional mass to be added to it so that it oscillates at one-tenth of its initial frequency.	[5]	CO3]

L3

L3

L3

L3 L3

L3

L4

L4