IAT 1

Answer all questions under all the sections

*	D۵	a	mi	re	Ы
	116	ч	uı	ľ	u

1.	Email address *
2.	Name *
3.	USN *
4.	Section *
	Mark only one oval.
	A
	В
	E

5.	In computers, subtraction is usually carried out by *	2 points
	Mark only one oval.	
	1's complement	
	2's complement	
	9's complement	
	10's complement	
6.	What characteristic of RAM makes it not suitable for permanent storage? *	2 points
	Mark only one oval.	
	Too slow	
	Unreliable	
	Non-volatility	
	Volatility	
7.	Computers use addressing modes for *	2 points
	Mark only one oval.	
	giving programming versatility	
	to reduce number of bits in the field of instruction	
	specifying rules for modifying address field of the instruction	
	all of the above	

8.	The circuit used to store one bit of data is *	2 points
	Mark only one oval.	
	register encoder	
	flip flop	
	decoder	
9.	FFCD9 h is equivalent to *	2 points
	Mark only one oval.	
	(1111 1111 1100 1101 1001) base 2	
	(10809) base 10	
	both of the above	
	none of these	
10.	Cache memory acts between *	2 points
	Mark only one oval.	
	CPU and RAM	
	RAM and ROM	
	CPU and Hard Disk	
	None	

11.	A 3-input NOR gate gives logic high output only when *	2 points
	Mark only one oval.	
	all input are low	
	one input is high	
	two inputs are high	
	one input is low	
12.	A binary digit is called a *	2 points
	Mark only one oval.	
	byte	
	word	
	bit	
	none	
13.	The 2's complement of the number 0111 in 6 digit form is *	2 points
	Mark only one oval.	
	111001	
	111111	
	110000	
	none	

14.	The load instruction is mostly used to designate a transfer from memory to a process register known as *	
	Mark only one oval.	
	Instruction register	
	Program counter	
	Accumulator	
	Memory address register	
15.	Consider a hypothetical processor with an instruction of type LW R1, 20 (R2), which during execution reads a 32-bit word from memory and stores it in a 32-bit register R1. The effective address of the memory location is obtained by the addition of a constant 20 and the contents of register R2. Which of the following best reflects the addressing mode implemented by this instruction for the operand in memory? *	2 points
	Mark only one oval.	
	Immediate Addressing	
	Register Addressing	
	Register Indirect Scaled Addressing	
	Indexed Addressing	
16.	Which of the following is/are true of the auto-increment addressing mode? I. It is useful in creating self-relocating code II. If it is included in an Instruction Set Architecture, then an additional ALU is required for effective address calculation III. The amount of increment depends on the size of the data item accessed *	2 points
	Mark only one oval.	
	I only	
	II only	
	III only	
	II and III only	

17.	The value of a float type variable is represented using the single-precision 32-bit floating-point format of the IEEE-754 standard that uses 1 bit for sign, 8 bits for the biased exponent, and 23 bits for mantissa. A float type variable X is assigned the decimal value of -14.25. The representation of X in hexadecimal notation is *	3 points
	Mark only one oval.	
	C1640000H	
	416C0000H	
	41640000H	
	C16C0000H	
18.	Scan and upload the working of the previous question.	3 points
	Files submitted:	

19. Consider the following program segment. Here R1, R2 and R3 are the general purpose registers. Assume that the content of memory location 3000 is 10 and the content of the register R3 is 2000. The content of each of the memory locations from 2000 to 2010 is 100. The program is loaded from the memory location 1000. All the numbers are in decimal. Assume that the memory is word addressable. The number of times ADD instruction is executed is: *

Instruction	Operation	Instruction size (no. of words)
MOV R1, (3000)	R1←M[3000]	2
LOOP:MOV R2, (R3)	R2←M[R3]	1
ADD R2, R1	R2←R1 + R2	1
MOV (R3), R2	M [R3]←R2	1
INC R3	R3←R3 + 1	1
DEC R1	R1←R1 – 1	1
BNZ LOOP	Branch on not zero	2
HALT	Stop	1

Mark only one oval.

()	20
_		

10

11

() 21

This content is neither created nor endorsed by Google.

Google Forms