

1. State and explain Coulomb's law in vector form. [05] CO1 L1
Solary The form the two way small changed
objects reported in vocuum on free sponse objects reparated in vocuum on precipioned to than size is ponopositional to the $Q_1 \qquad P \qquad R_+$ Q_1
 Q_2 + Q_2 - $P = \frac{R Q_1 Q_2}{R^2}$
 Q_1 + Q_2 - $P = \text{on.}$ and Q R -> reponding manifestionality. $Re=\frac{1}{4\pi\epsilon_{0}}$
where, $\epsilon_{0}\rightarrow$ from the vity of free space. ϵ_0 = 9.854 x 10⁻¹² F/m
= $\frac{1}{36\pi}$ x 1⁰⁻⁹ F/m. F - Force in Newton.

1. (b)
$$
\therefore
$$
 $F_1 = \frac{R_1 A_2}{4nC_0 R_1}$ $(-A_1)$ $=-F_1$ \Rightarrow *Caabab 13 has 13* a mutual force. Implementing *the obson unthome in subedge and in the the*

2. Obtain an expression for electric field intensity due to an infinitely long uniform line charge distribution. [10] CO1 L1

Find the electric field intensity due to a line
\nclonge distribution
\n
$$
dx^2
$$
 and dx^2 is the electric length,
\n dx^2 is the electric length.
\n dx^2

$$
\int_{0}^{2\pi} \frac{f(e^{-x})}{f(e^{-x})} dx = \int_{0}^{2\pi} \frac{f(e^{-x})}{f(e^{-x})} dx
$$
\n
$$
= \int_{0}^{2\pi} \frac{f(e^{-x})}{f(e^{-x})} dx = \int_{0}^{2\pi} \frac{f(e^{-x})}{(e^{-x})^{2}} dx
$$
\n
$$
= \frac{f(e^{-x})}{4\pi\epsilon_{0}} \int_{0}^{2\pi} \frac{f(e^{-x})}{(e^{-x})^{2}} dx
$$
\n
$$
= \frac{f(e^{-x})}{4\pi\epsilon_{0}} \int_{-\pi}^{\pi} f(e^{-x}) dx
$$
\n
$$
= \frac{f(e^{-x})}{4\pi\epsilon_{0}} \
$$

3. Write and explain the mathematical form of Gauss's law. [05] CO2 L2

4. A charge $Q_1 = 3 \times 10^{-4}$ C is located at (1, 2, 3) and a second charge $Q_2 = 10^{-4}$ C is located at $(2,0,5)$ in vacuum. Find the force exerted on Q_2 by Q_1 . [05] CO1 L3

a
$$
\lim_{\Delta x \to 0} \lim_{\Delta y \to 0} \lim_{\Delta y \to 0} \frac{a_1 = 3 \times 10^{-4} \text{ C} \text{ at } M(1,3,5) \text{ m/s}}{a_1 = 3 \times 10^{-4} \text{ C} \text{ at } N(1,2,3) \rightarrow Q_1}
$$

\n $a_1 = 3 \times 10^{-4} \text{ C} \text{ N } (1,2,3) \rightarrow Q_1$
\n $a_2 = -10^{-4} \text{ C} \text{ N } (2,0,5) \rightarrow Q_2$
\n $\frac{a_1}{a_1} = \frac{R_{12}}{6} \text{ N}$
\n $(1,2,3) \text{ N } (2,0,5) \rightarrow Q_2$
\n $\frac{a_1}{b_1} = \frac{R_{12}}{b_1} = \frac{a_2}{b_1} = \frac{a_2}{b_$

5. A uniform line charge of infinite length with $p_L = 40$ nC/m lies along z-axis. Find E at $(-2, -2, 8)$ in air. [05] CO2 L1

A uniform line charge of infinite length with
\n
$$
f_L = 40 \text{ nC/m}
$$
 along 2- and,
\nFind $\vec{E}(-2, 2, 8)$ m atn.
\n
$$
\frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{
$$

All services

6. Find **E**, at origin due to a point charge 12 nC at $(2, 0, 6)$. [05] CO1 L3

E at (1,1,1) due to a 3nC point charge at (1,1,0).
\n
$$
\vec{E} = \frac{a}{4\pi\epsilon_0 |\vec{R}|^2}
$$
, \hat{a}
\n $\vec{R} = (1-1)a_x + (1-1)a_y + (1-0)a_z$
\n $\vec{R} = \hat{a}_z$ $|\vec{R}| = 1$ $\hat{a} = \hat{a}_z$
\n $\vec{E} = 3 \times 10^{-9}$ $\hat{a} = \hat{a}_z$ 26.96 \hat{a}_z V/m

7. An infinite surface charge with uniform surface charge density $\rho s = 120 \mu C/m^2$ [05]lies on the plane $z = -5$ m. Find **D** at $(2, -3, 6)$ in air. \overline{a} \mathbf{r}

$$
\int_{S} 2120 \mu C/m^2 \text{ on } \mathbb{Z} \text{ plane } Z = -5m.
$$
\n
$$
D \text{ at } (2, -3, 6) \text{ final}
$$
\n
$$
\overline{D} = \underline{\int_{0}^{2} A_{Z} = 120 \mu A_{Z} \text{ when } Z = -5m.
$$
\n
$$
= 60 \mu \overline{A_{Z}}
$$
\n
$$
= 60 \mu \overline{A_{Z}}
$$

