18EC56/17EC53/15EC53 Verilog HDL IAT1 question Paper

Verilog HDL IAT 1: Digital Circuits Questions and Answers – Introduction to Hardware Description Language
This set of Digital Electronics/Circuits Multiple Choice Questions & Answers (MCQs) focuses on "Introduction to hardware description language".

NAME *		
AYUSH KUMAR		
USN *		
1CR18EC033		
SEM *		
5		
<u></u>	 	

ECTION *	
RTL means *	
Resister transistor Level	
Register transfer Logic	
Resister transfer Level	
Register transfer Level	
. VERILOG HDL IS *	
TRUE	
) FALSE	

CAD is an acronym for * Computer Aided Drawing Computer Aided Design Capture and Design None of the above
Computer Aided DesignCapture and Design
Capture and Design
None of the above
Option 1
Varilla u manula a militare at the Delevice and Chrostowel Cata Control and Transistant and the last t
Verilog may be written at the Behavioral, Structural, Gate, Switch, and Transistor levels. *
True
○ False

How many data select lines are required for selecting eight inputs in a mux ? *
O 1
O 2
3
o all
Verilog is case sensitive. *
True
False

What are the symbols used to represent digits in the binary number system? *
0,1,2
0,1
O 1,2
O through 8
Give the decimal value of binary 10010. *
(6)10
O (9)10
(18)10
O (20)10
(20)10
(20)10

How is a J-K flip-flop made to toggle? *

- $\int J = 0, K = 0$
- **J** = 1, K = 0
- **J** = 0, K = 1
- **J** = 1, K = 1

The number of digits in octal system is *

- **1**6
- **(**
- () 10
- O 4

A full adder can be implemented using*
two half adders
two half adders and a OR gate
two half adders and a NOT gate
three half adders
The full form of HDL is *
Higher Descriptive Language
Higher Definition Language
Hardware Description Language
High Descriptive Language

The full form of VHDL is *	
VHSIC Hardware Description Language	
Verilog Hardware Description Language	
Variable Definition Language	
None of the Mentioned	
Other:	
VHDL is being used for *	
Documentation	
Verification	
Synthesis of large digital design	
All of the Mentioned	
Other:	

VLSI: Very Large scale integration means *
A few gates on a chip
Hundreds of gates on a chip
Thousands of gates on a chip
Twenty Thousands of gates to 10 X 106 transistors on a chip
Other:
EDA Stands for *
Electronic Development Application
Electronic Design automation
Electric Design automation
C Electronic data Anaalysis
Other:

Placing of the chip routing of the chip layout of the chip All the above Other: The term Computer Aided Enginerring (CAE) tools refer to tools that are used for frontend such as * HDL simulation, logic synthesis and timing analysis. HDL simulation, logic synthesis and Placing and routing Placing ,routing and layout of the chip	Technically, the tool CAD refers to the backend tools that performs functions *
 layout of the chip. All the above Other: The term Computer Aided Enginerring (CAE) tools refer to tools that are used for frontend such as * HDL simulation, logic synthesis and timing analysis. HDL simulation, logic synthesis HDL simulation, logic synthesis and Placing and routing 	O Placing of the chip
 All the above Other: The term Computer Aided Enginerring (CAE) tools refer to tools that are used for frontend such as * HDL simulation, logic synthesis and timing analysis. HDL simulation, logic synthesis HDL simulation, logic synthesis and Placing and routing 	orouting of the chip
Other: The term Computer Aided Enginerring (CAE) tools refer to tools that are used for frontend such as * HDL simulation, logic synthesis and timing analysis. HDL simulation, logic synthesis HDL simulation, logic synthesis and Placing and routing	layout of the chip.
The term Computer Aided Enginerring (CAE) tools refer to tools that are used for frontend such as * HDL simulation, logic synthesis and timing analysis. HDL simulation, logic synthesis HDL simulation, logic synthesis and Placing and routing	All the above
 HDL simulation, logic synthesis and timing analysis. HDL simulation, logic synthesis HDL simulation, logic synthesis and Placing and routing 	Other:
 HDL simulation, logic synthesis and timing analysis. HDL simulation, logic synthesis HDL simulation, logic synthesis and Placing and routing 	
HDL simulation, logic synthesisHDL simulation, logic synthesis and Placing and routing	The term Computer Aided Enginerring (CAE) tools refer to tools that are used for frontend such as *
HDL simulation, logic synthesis and Placing and routing	HDL simulation, logic synthesis and timing analysis.
	HDL simulation, logic synthesis
Placing ,routing and layout of the chip	HDL simulation, logic synthesis and Placing and routing
	Placing ,routing and layout of the chip
Other:	Other:

Verilog HDL – Verilog was introduced in 1983 by *
US. Dept. of Defense in 1983
Gateway Design System Corporation
DARPA Defense Advanced Research project Agency.
None of the above
Other:
IEEE standard IEEE 1364-1995 is the original HDL standard In 1995 *
O VHDL
Verilog
Both VHDL and Verilog
Either VHDL or Verilog
Other:
Other:

IEEE standard IEEE 1076-1993 is the original HDL standard *
VHDL
○ Verilog
Both VHDL and Verilog
Either VHDL or Verilog
Other:
VHSIC stands for *
Very High Speed Integrated Circuits
Very Higher Speed Integration Circuits
Variable High Speed Integrated Circuits
Variable Higher Speed Integration Circuits
Other:

module template consists of *	
o module	
endmodule	
module name and port list	
all of the above	
Simulation is process of *	
Writing a verilog Module	
Imitating a real world object and verifying the design functionality	
converting a high-level description of design into an optimized gate-level representation	
All of the above	

Instance created when *
A Module is written using Verilog HDL
When stimulus block is written using Verilog HDL
When a module is invoked in another module using an instance id
None of the above
What is the output of the following code: initial clk =1'b0; always #100 clk = ~clk; *
Clk is initialized to '0'
ally is a naviadia simply with mariad of any avalantill he 200 times units
Clk is a periodic signal with period of one cycle will be 200 time units
clk signal has 50% duty cylce
o clk signal has 50% duty cylce

Select the highest and lowest level of abstractions *
Behavioral abstraction, Dataflow abstraction respectively
Gate abstraction, Behavioral abstraction respectively
Switch level abstraction, Behavioral abstraction respectively
Behavioral abstraction, Switch level abstraction respectively
In top-down design methodology, top level block is divided into sub-blocks, further sub-blocks are divided until leaf cells are
obtained *
obtained *
obtained * True
obtained * True

Answer any 2 from the following Questions. Each carry 10 marks. *

- 1. Explain the HDL based design flow with the help of flowchart.
- 2. Discuss the trends and popularity of the verilog HDL.
- Explain the top-down design methodology by taking 4-bit Ripple carry counter as an example.
- 4. Write the design and stimulus blocks of 4-bit Ripple Carry counter.

This form was created inside of CMR Institute of Technology.

Google Forms

Name: Arun Kumas HR USN: ICRITTE004 Sub- Y U- HDL -> all + Horis are used for simulation of System boards, Puterconnect Luxes, FRGA and pais Standard * Verilog HDL is a IE En 1995, the original standard EFF 1364-1995 was approved * JEEE 1364-2001 is the latest Venlog HDL Standards -> Typical Design Flow 1) Specification 2) Behavioural Description 3) RIL description + Functional Verification and Testing -> Logical Synthesis 4) Gode level Netlist -> Esgical Verification
and Testing
-> Automatic place & Route s) physical Larped Layout Verification > Direlementation Levels of Design process in Design How

Verilog HDL

H. Here top level module is 4-bit Ripple casery counter Ripple Carry counter is constructed using F-flipflips Hence in the next level of vivacery it consists of only D-flip flops of an invertex. D flip flop can be implemented using gates like & invertex or it may be designed using only switches. If D-ff is implemented using only switches then D-ff is one of the leafcell. Inverter is implemented using only switches.

. The supple carry counter shown in following

It is made up et (-) ve edge triggered toggle flip flop.

Fach of the T-FF can be made up from

-ve edge triggered D-FF Ep invodors as known in the
following

A typical duign flow for duigning VISI I C specification Behavioral Description Functional Login Synthesis Level Netlist Logical verification Texting Floor Planning Automatie place & Route Layout verification

I mplementation

Scanned with CamScanner