| IAI | | |-----|--| |-----|--| Microwaves and Antennas (17EC71/15EC71) | 1 | M | icro | waves | are * | |---|---|------|-------|-------| | | | | | | | DC signals | with Longest | wavelengths | and shortest | frequencies | |----------------|--------------|-------------|--------------|-----------------| |
Doolgilais | With Longest | wavelengths | una ononteo | . II cquciloico | - AC signals with Longest wavelengths and shortest frequencies - OC signals with shortest wavelengths and highest frequencies - AC signals with shortest wavelengths and highest frequencies ## 2. Microwaves range from - 300MHz to 30GHz - 30MHz to 300GHz - 300GHz to 30THz - 30GHz to 300THz | 3. Following are the applications of microwaves | |---| | HeatingCommunicationMedical diagnosticsAll the above | | 4. Microwaves range in wavelengths from | | 1cm to 1m 10cm to 1m 1cm to 100m None of the above | | 5. Microwaves are used as in communication systems | | Message signal | | Carrier signal | | Both | | None of the above | Cannot be predicted Depends on the atmosphere 8. What is the principle of operation of reflex Klystron oscillator? Amplitude modulation Frequency modulation Pulse modulation Velocity modulaton | 9. Which of the following is the source of microwave ? | |--| | Gunn oscillatorKlystron oscillatorMagnetronAll the above | | 10. Transit time is | | Time taken by the electron to travel from cathode to repeller Time taken by the electron to travel from cathode to repeller and back to anode Time taken by the electron to travel from anode to repeller None of the above | | 11. Propagation constant is | | A function series impedance and shunt admittance A function of attenuation constant and phase constant Both | | 12. Following are examples of transmission lines | |---| | Co-axial cable Waveguides Strip lines All the above | | 13. Following is the correct representation of primary line constants | | Series resistance, shunt inductance, shunt capacitance and series conductance Series resistance, series inductance, shunt capacitance and shunt conductance Shunt resistance, shunt inductance, shunt capacitance and series conductance Series resistance, shunt inductance, series capacitance and shunt conductance | | 14. Following are primary line constants | | R, G, L, f | | R, G, L and C | | \bigcirc γ,α,β, Z_0 | | V, I, Z_0 | | 15. Following are secondary line constants | |--| | γ, Z_0 | | R and G | | ☐ L and C | | None of the above | | | | 16. Attenuation constant is measured in | | Nepers / km | | Radiations / km | | O dB / km | | Both first and third options | | | | 17. What is reflection coefficient ? | | Ratio of reflected voltage to incident voltage | | Ratio of reflected current to incident current | | Both | | None of the above | | | | 18. Reflection coefficient ranges from | |--| | ● 0 to 1 | | 1 to infinity | | 1 to 100 | | None of the above | | | | 19. SWR standing wave ratio has to befor co axial connector. | | Low | | High | | Infinite | | Cannot be calculated | | | | 20. Incident energy will be reflected because of | | Cosses in the line | | Impedance mismatches | | Interference | | None of the above | | | 3/9/2021 | 21. Transmission coefficient is | |---| | Ratio of transmitted voltage to incident voltage | | Ratio of transmitted voltage to reflected voltage | | Ratio of transmitted voltage to incident current | | None of the above | | 22. Expression for α(attenuation constant) in terms of R , G, L and C of a transmission line is: | | | | $\bigcirc (R\sqrt{(C/L)}+G\sqrt{(L/C)})$ | | $\bigcirc (R\sqrt{(L/C)}+G\sqrt{(C/L)})$ | | $\bigcirc (R\sqrt{(L/C)+G\sqrt{(C/L)}})0.5$ | | | | 23. Expression for characteristic impedance Z_{o} of a transmission line in terms of L and C the transmission line is: | | √(C/L) | | ○ √(CL) | | √(L/C) | | 1/√(LC) | | | IAT1 | 24. If the inductance and capacitance of a loss line transmission line are 45 mH/m and
10 μ F/m, the characteristic impedance of the transmission line is: | |--| | Ο 50Ω | | 67.08Ω | | Ο 100Ω | | one of the mentioned | | 25. If R = $1.5\Omega/m$, G = 0.2 mseimens/m, L = 2.5 nH/m, C = 0.1 pF/m for a low loss transmission line, then the attenuation constant of the transmission line is: | | 0.0158 | | 0.0523 | | 0.0216 | | 0.0745 | | | | 26. When a load is matched to a transmission line, the condition that is satisfied when matched is: | | ZL=Z0 | | | | ○ ZL=Zin | | ZL=2Zin | | | | 27. When a load ZL is matched to a line, the value of standing wave ratio is: | |--| | 1 | | O 0 | | infinity | | insufficient data to calculate SWR | | | | 28. The value of reflection co efficient when a transmission line is matched to the load is: | | O 1 | | O | | 0.707 | | cannot be determined | | | | 29. The value of transmission co efficient when a transmission line is matched to a load is: | | 1 | | O 0 | | 0.707 | | 0.5 | | | | 30. If ZL< Z0, then the reflection coefficient at that junction is: | |---| | Γ<0 | | Γ>0 | | ○ Г>1 | | None of the mentioned | | | | 31. Which of the following bands that comes under Microwave Band | | | | O D | | ○ E | | All the above | | | | 32. Reflex klystron is a | | Amplifier | | Oscillator | | Attenuator | | ○ Filter | | | | 33. At Microwave frequencies , the size of the antenna becomes | |--| | Very large Large | | ○ Small | | Very Small | | 34. The key difference between circuit theory and transmission line theory is: | | circuit elements | | voltage | | current | | electrical size | | 35. Transmission line is a parameter network. | | Umped | | distributed | | active | | onone of the mentioned | | 36. For transverse electromagnetic wave propagation, we need a minimum of: | |--| | 1 conductor | | 2 conductors | | 3 conductors | | bunch of conductors | | | | 37. The reflection coefficient on a line is 0.2 ∠45°. The SWR is | | 0.8 | | O 1.1 | | O 1.2 | | 1.5 | | | 38. In the given figure reflection coefficient at load is - 0.6 - 0.6 39. Assertion (A): The impedance of a matched load is equal to characteristic impedance of line.Reason (R): A matched termination absorbs all the power incident on it. - Both A and R are correct and R is correct explanation of A - Both A and R are correct but R is not correct explanation of A - A is correct but R is wrong - A is wrong but R is correct | 40. Which of the following parameters is negligible in transmission lines? | |---| | O R | | ○ L | | ○ c | | | | | | 41. A line has Z0 = 300 \angle 0° Ω . If ZL = 150 \angle 0° Ω , reflection coefficient is | | 0.5 | | 0.3333 | | -0.3333 | | -0.5 | | | | 42. A line has a phase constant of 29.8 rad/m. At 1000 MHz the wavelength is | | 29.8 m | | 2.98 m | | O 2.1 m | | ● 0.21 m | | | | 43. A line is excited by a 100 V dc source. If reflection coefficients at both ends are 1 each then | |---| | there will be no oscillations on line there will be only 1 or 2 oscillations on line there will be a finite number of oscillations on line the oscillations will continue indefinitely | | 44. Reflex klystron oscillator is essentially a low power device True False | | 45. A 10 km long line has a characteristic impedance of 400 ohms. If line length is 100 km, the characteristic impedance is $\begin{array}{c} 4000\Omega\\ 400\Omega\\ 400\Omega\\ \end{array}$ | | 46. A resistive microwave load with ZL = 150 Ω is connected to 50 Ω coaxial line. SWR is | |--| | more than 3 | | O less than 3 | | equal to 3 | | either (a) or (c) | | | | 47. In Reflex Klystron oscillator the focussing electrode is at a high potential | | True | | False | | | | 48. If a line having Z0 = 300 ∠ 0 W is open circuited at far end, VSWR is | | O 0 | | O 1 | | | | O 2 | | | | | | 49. A transmission line has Z0 = 300 Ω and ZL = (300 - j300) ohm. The transmission coefficient is | |--| | 1.265 ∠ - 18.43° | | 1.01 ∠ - 10°1.14 ∠ 66.68° | | O 1.09 ∠ 66.68° | | | | 50. In a reflex klystron oscillator, repeller electrode is at | | 50. In a reflex klystron oscillator, repeller electrode is at low positive potential | | | | O low positive potential | This form was created inside of CMR Institute of Technology. Google Forms