

USN

Internal Assessment Test 2– November 2020

Sub: CAD of Digital Systems Sub Code: 18EVE31 Branch: M.Tech

Date: 12/11/2020 Duration: 90 min’s Max Marks: 50
Sem /

Sec:
III, VLSI OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Calculate the least cost solution for the travelling salesman problem shown in figure

 below using backtracking algorithm. Show the least – cost path. Draw the search

 tree and explain.

[10]

CO2

L3

2. Describe briefly VLSI design problem formulation with respect to compaction,

 informal and graph theoretical formulation and maximum distance constraints with

 diagrams.

[10]

CO2

L1

3. (a)Write short notes on minimum distance rules. [06] CO2 L2

 (b)Discuss briefly about applications of compaction [04] CO2 L2

4. Explain how a genetic algorithm is used for search and solution of a combinatorial

 Optimization problem.
[10]

CO2

L3

5. Explain the applications of the Bellman Ford algorithm with pseudo-code to the

 directed graph shown below in figure 1:

 Figure 1 – Directed Cyclic Graph

[10]

CO2

L3

6. Write and explain the pseudo-code for simulated annealing. Detail the application in
 VLSI design with pros and cons.

[10]

CO2

L2

7. Explain the principle of Branch and bound algorithm for finding the optimal

 solution of a combinatorial optimization problem.

[10]

CO2

 L1

CMR Institute of Technology

Department of ECE

M.Tech III Sem VLSI Design & Embedded Systems

IAT -2 Scheme and Solution

18EVE31- CAD of Digital Systems

1. Calculate the least cost solution for the travelling salesman problem

shown in figure below using backtracking algorithm. Show the least –

cost path. Draw the search tree and explain.
 Principle of using backtracking for an exhaustive search of the solution space-

start with an initial partial solution in which as many variables as possible are left

unspecified

 Then systematically assign values to the unspecified variables until either a single

point in the search space is identified or an implicit constraint makes it impossible

to process more unspecified variables

 Both cases- the algorithm continues by going back to a partial solution generated

earlier and then assigning a next value to an unspecified variable (hence the name

"backtracking").

 Pseudo-Code

 Assumption- all variables fi have type solution-element.

 The partial solutions are generated in

 such a way that the variables fi are specified for 1≤ i ≤ k and are unspecified for i

> k

 Partial solutions having this structure will be denoted by

 corresponds to a fully-specified solution

 The global array val corresponds to the vector

 The value of fk, is stored in va1[k – 1].

 The procedure cost(val) is supposed to compute the cost of a feasible solution

using the cost function c. It is obviously only called when k= n, i.e. when a

solution is fully specified.

 Procedure allowed(val, k) returns a set of values allowed by the explicit and

implicit constraints for the variable fk+1, given

 The best solution found is stored in the global array best-solution and it is

reported at the end of the search process.

 Consider the graph version of the traveling salesman problem (TSP)

 The number of vertices in a graph G(V, E) equals n – 1

 A solution can be specified by a sequence of n, vertices such that an edge between

subsequent vertices exists, the first vertex in the sequence equals the last one and

the first n - 1 vertices are distinct.

 The sequence can be characterized by n variables fi (1≤ i ≤ n), one for each

position in the sequence

 The value of fi is the vertex at position i in the sequence

 one can select any of the vertices in the graph and state that f1 and fn can only

have value v.

 These are the explicit constraints for f1 and fn

 The implicit constraints are that any sequence specified by the variables should

form a path

 Example- Travelling Salesman Problem (TSP)

Search tree obtained by the exhaustive search backtracking algorithm for the TSP

Problem

• Backtracking algorithm can be visualized by nodes in a tree, called the search tree

• The search tree for the given example is shown in figure

• A tree is a directed graph here

• It is normally drawn in such a way that all edges have an implicit direction from top to

bottom.

• The single node at the highest level, Level 1, is called the root of the tree

• The nodes incident from the node (connected to it at the next lower level) are called its

children

• Every level of the tree corresponds to a variable. The children at level k +1 of a node at

level k correspond to the partial solutions obtained by specifying a value for fk+1 ,

• So a node at level k represents a partial solution

• Nodes without children are called leaf nodes

• Each node except for the root has exactly one incoming edge. The other endpoint of this

edge is called the node's parent.

• Removing this incoming edge for a node

 gives a subtree having as its root

• Each path in the tree starting at the root and ending in a leaf node corresponds to either a

fully specified solution of which the cost can be computed (indicated with the cost value

in the figure) or to a state in the backtracking procedure from which no new (partial)

solution can be generated due to the fact that no legal assignment to the next variable is

possible (indicated with an 'x' in the figure).

• The optimal tour visits the vertices in the order A, E, D, C, B, F, and A (or in the reverse

order) and has a total length of 20

2. Describe briefly VLSI design problem formulation with respect to

compaction, informal and graph theoretical formulation and maximum

distance constraints with diagrams.

In one-dimensional, say horizontal, compaction a rigid rectangle can be represented by

one x-coordinate (of its center, for example) and a stretchable one by two (one for each of

the endpoints)

Assumption – n distinct x-coordinates indicated as x1,x2,….xn

A minimum-distance design rule between two rectangle edges can now be expressed as

an inequality xj – xi ≥ dij.

The pairs of variables associated with horizontally stretchable rectangles

• For example, if the minimum width is a and the minimum separation is b, then

 x2 – x1 ≥ a

 x3 – x2 ≥ b

 x3 – x6 ≥ b

Constraint Graph

• The inequalities can be used to construct a constraint graph G(V, E):

(i) There is a vertex vi for each variable xi that occurs in an inequality

(ii) For each inequality xj – xi ≥ dij , there is an edge (vi ,vj) with weight dij .

(iii)There is an extra source vertex, v0; it is located at x = 0 ; all other vertices are at its

right. There are n +1 vertices in total (v0,v1,….vn)

• If all the inequalities express minimum-distance constraints, the graph is acyclic (DAG).

• The longest path in a constraint graph determines the layout dimension

 Constraint Graph

Maximum-Distance Constraints

• Sometimes the distance of layout elements is bounded by a maximum, e.g., when the user

wants a maximum wire width, maintains a wire connecting to a via, etc.

(i)A maximum distance constraint gives an inequality of the form:

 xj – xi ≤ cij where cij ≥ 0

 or

 xi – xj ≥ -cij
(ii) Consequence for the constraint graph: backward edge - (vj, vi) with weight dji = -cij;

the graph is not acyclic anymore

• The longest path in a constraint graph determines the layout dimension

3. (a)Write short notes on minimum distance rules.

• Mask patterns that are used for the fabrication of an integrated circuit have to obey

certain restrictions on their shapes and sizes

• Design rules -restrictions on the mask patterns to increase the probability of successful

fabrication.

• Sticking to the design rules decreases the probability that the fabricated circuit will not

work due to short circuits, disconnections in wires, parasitics, etc.

• Shape of the patterns- often restricted to rectilinear polygons, i.e polygons that are made

of horizontal and vertical segments only (Figure 1)

 Figure 1- Rectilinear Polygon

• Some technologies allow 45-degree segments in polygons, segments that are parallel to

the lines y = x or y = - x on an x-y plane(Figure 2)

 Figure 2 – 45- degree segments Polygon

• If patterns in two specific layers are constrained by one or more design rules, the layers

are said to interact

• Example- polysilicon and diffusion are interacting layers as their overlapping creates a

transistor, whereas polysilicon and metal form noninteracting layers

• Distances are often expressed in integer multiples (or small fractions) of a relative length

unit, the λ, rather than absolute length units.

• All mask patterns are drawn along the lines of a so-called lambda grid (Figure)

Fig (a) – minimum-width Fig (b, c, d) – minimum separation Fig(e) – minimum

overlap

• Minimum width: a pattern in a certain layer cannot be narrower than a certain distance

(Fig (a))

• Minimum separation: two patterns belonging to the same (Fig(b)) layer or to different but

interacting layers (Fig (c)) cannot be positioned closer to each other than a certain

distance; this is also true when the rectangles are diagonally separated (Fig(d)).

• Minimum overlap: a pattern in one layer located on top of a pattern in another interacting

layer should have a minimal overlap (Fig (e)).

3. (b) Discuss briefly about applications of compaction
• A compaction program or compactor generates layout at the mask level. It attempts to

make the layout as dense as possible.

 Applications of compaction:

• Area minimization: remove redundant space in layout at the mask level.

• Layout compilation: generate mask-level layout from symbolic layout.

• Redesign: automatically remove design-rule violations.

• Rescaling: convert mask-level layout from one technology to another.

4. Explain how a genetic algorithm is used for search and solution of a

combinatorial optimization problem.
• Works with fully specified solutions f included in the set of feasible solutions F.

• The algorithm simultaneously keeps track of a set P of feasible solutions, called the population.

• In an iterative search process, the current population P
(k)

is replaced by the next one P
(k+1)

using a

procedure that is characteristic for genetic algorithms.

• To generate a feasible solution f
(k+1)

€ P
(k+1)

 ,

two feasible solutions ,f

(k)
and g

(k)
 called the

parents of the child f
(k+1)

are first selected from P
(k)

• f
(k+1)

 is generated in such a way that it inherits parts of its "properties" from one parent and the

other part from the second parent by the application of an operation called crossover.

• First of all, this operation assumes that all feasible solutions f ϵ F can be encoded by a fixed

length vector: f = [f1, f2,….fn]
T

• Genetic algorithms use bit strings to represent feasible solutions.

• This not only implies that the number of vector elements n is fixed, but that the number of bits to

represent the value of each element fi (1 ≤ i ≤ n) is fixed as well.

• The string of bits that specifies a feasible solution in this way, is called a chromosome

• A feasible solution (in biological terms, the phenotype) and its encoding as a chromosome (its

genotype).

• Given two chromosomes, a crossover operator will use some of the bits of the first parents and

some of the second parent to create a new bit string representing the child.

• Working of crossover Operator

• Generate a random number r between 1 and the length l of the bit strings for the problem

instance.

• Copy the bits 1 through r - 1 from the first parent and the bits r through l from the second

parent into the bit string for the child

• Sometimes, it is customary to generate a second child using the same r, now reversing the roles of

both parents when copying the bits.

• The generation of a pair of children f
(k+1)

and g
(k+1)

from a pair of parents f
(k)

and g
(k)

 is shown in

figure

• Also illustrates a complication that arises in genetic algorithms due to the encoding of the

solution as a bit string.

• One solution to this complication is to use strings that consist of more sophisticated data

structures than single bits

• Sometimes, it is customary to generate a second child using the same r, now reversing the roles of

both parents when copying the bits.

• The generation of a pair of children f
(k+1)

and g
(k+1)

from a pair of parents f
(k)

and g
(k)

 is shown in

figure

• Also illustrates a complication that arises in genetic algorithms due to the encoding of the

solution as a bit string.

• One solution to this complication is to use strings that consist of more sophisticated data

structures than single bits

• Sometimes, it is customary to generate a second child using the same r, now reversing the

roles of both parents when copying the bits.

• The generation of a pair of children f
(k+1)

and g
(k+1)

from a pair of parents f
(k)

and g
(k)

 is

shown in figure

• Also illustrates a complication that arises in genetic algorithms due to the encoding of the

solution as a bit string.

• One solution to this complication is to use strings that consist of more sophisticated data

structures than single bits

• A chromosome could then be represented as a vector of e.g. integers or characters.

• The combination of the chromosome representation and the crossover operator for

generating new feasible solutions, leads, however, to more complications.

• This behavior can be avoided by using special-purpose crossover operators called order

crossover.

• This operator copies the elements of the first parent chromosome until the point of the cut

into the child chromosome

• The remaining part of the child is composed of the elements missing in the permutation

in the order in which they appear in the second parent chromosome.

• One needs to favor good solutions above bad solutions in some way. This is done by

giving a stronger preference to parents with a lower cost when selecting pairs of parents

to be submitted to the crossover operator.

• So, the better the cost of some feasible solution, the higher the chances that it will be

selected for reproduction.

• Pseudo Code
• In the main loop of the code, two parents at a time are selected and used to generate one

new child in the new population

• The function select is responsible for the selection of feasible solutions from the current

population favoring those that have a better cost

• The function crossover actually generates a new child from two parent chromosomes

• The function stop decides when to terminate the search, e.g. when there has been no

improvement on the best solution in the population during the last m iterations, where m

is a parameter of the algorithm.

• Mutation - main feature of genetic algorithm

• This is a phenomenon also encountered in nature, viz. that errors can be made during the

copying of a chromosome from a parent to the child

• Mutation helps to avoid getting stuck in a local minimum

5. Explain the applications of the Bellman Ford algorithm with pseudo-code

to the directed graph shown below in figure 1:

 Figure 1 – Directed Cyclic Graph

• An alternative to the Liao-Wong algorithm

• Does not discriminate between forward and backward edges

• If there are more than n iterations, where n is the number of vertices in the graph G(V,

E),it can be concluded that the graph has positive cycles

• This can be seen as follows:

 After k iterations, the algorithm has computed the longest-path values for paths going

through k - 1 intermediate vertices.

• If there are no cycles, the algorithm should terminate after at most n iterations, as the

longest path to a vertex can go through at most n - 1 vertices.

• The time complexity of the Bellman-Ford algorithm is O(n x lE l) as each iteration visits

all edges at most once and there are at most n iterations.

• In each row, the first column gives the contents of the set s1 at the beginning of the

algorithm and the remaining entries of the row show the distance value after having

processed all elements of s1 .

• The final result is the same as the one obtained by the Liao-Wong algorithm

6. Write and explain the pseudo-code for simulated annealing. Detail the

application in VLSI design with pros and cons.

Simulated annealing (sometimes also called statistical cooling) performs a computation that is

analogous to a physical process.

A material is first heated up to a temperature that allows all its molecules to move freely around

(the material becomes liquid), and is then cooled down very slowly.

The freedom of movement for the molecules decreases gradually until all the molecules take a

fixed position.

• At the end of the process, the total energy of the material is minimal provided that the cooling is

very slow.

• The analogy with the physical model has the following points of correspondence with a

combinatorial optimization problem:

 The energy corresponds to the cost function.

 The movement of the molecules corresponds to a sequence of moves in the set of feasible

solutions.

 The temperature corresponds to a control parameter T which controls the acceptance probability

for a move from f € F to g € N(f).

 Good move- c(g) ≤ c(f) – always accepted irrespective of the value of T

 Bad move- c(g) > c(f) - accepted with a probability where

• For high values of T nearly all bad moves are accepted, while hardly any bad move is accepted

when T is low.

• The Boltzmann distribution in statistical mechanics states that the number of molecules N1 with

energy level ϵ1 divided by the number of molecules N0 with energy level ϵ0 equals , where

 k is the Boltzmann constant and T is the absolute temperature.

• The algorithm consists of an outer loop in which the temperature is gradually lowered and an

inner loop in which the configuration is randomly perturbed by moves that are either accepted or

rejected

• The inner loop should be executed a number of times large enough to reach "thermal equilibrium"

before going back to the outer loop.

• Accepting or rejecting a move is represented by the function accept, in which the function

random(k) generates a real-valued random number between 0 and k with a uniform distribution.

• The function thermal-equilibrium should only return a value unequal to zero if the inner loop has

been executed a "sufficient" number of times

• This number is normally a function of the problem instance size.

• The function new-temperature computes a new, lower, value for the temperature to be used for

the next execution of the inner loop. In practice, this is often implemented by a multiplication of

T by a constant between 0 and 1.

• The function stop, finally, decides about the termination of the search.

• simulated annealing may visit an optimal solution and then move away from it

• So record the best solution in a separate variable and report its value at the end of the search

instead of the final value of f.

• The combination of the functions thermal-equilibrium, new-temperature and stop realizes a

strategy for simulated annealing, which is called the cooling schedule.

7. Explain the principle of Branch and bound algorithm for finding the

optimal solution of a combinatorial optimization problem.
• It is not necessary to visit all (partial) solutions that the backtracking procedure generates.

• Let D() denote the set of fully- specified solutions in the subtree with root

• Information about a certain partial solution 1≤ k < n, at a certain level can indicate that any fully-

specified solution derived from it can never be the optimal solution

• This conclusion is based on the estimation of the lower bound of the cost of all solutions in

 D()

 The function that estimates this cost lower bound will be denoted by

• If inspection of can guarantee that all of the solutions in D() have a higher

cost than some solution already found earlier during the backtracking, none of the children of

need any further investigation.

• We can say that the node in the tree corresponding to can be killed.

• The modification of the backtracking algorithm that provides in killing partial solutions is called

branch-and-bound

• One can prune the search tree by removing the subtree having as its root.

• Pseudo Code

 The main recursive procedure is called b-and_ b

 procedure lower-bound-cost is called to get a lower bound of the partial solution based on the

function

• A next level of recursion is entered only if the node in the search tree cannot be killed

 Search Tree for the TSP Problem using Branch-and-Bound Algorithm

