18EC55 EMW IAT-2 2020

* Required

Question paper is designed for 1 hour additional 15 mints will be given for scanning and uploading.

1.	Email *	
2.	The divergence of a vector field is a vector quantity. Mark only one oval.	2 points
	True Always Sometimes True and Sometimes False False Always	

3. * 4 points

a vector

Mark only one oval.

$$3.4\hat{x} + 4.1\hat{y} + 2.5\hat{z}$$

$$0.34\hat{x} + 0.41\hat{y} + 0.25\hat{z}$$

) a)

(b)

Given a scalar field f(x,y,z) and vector field $\vec{D}(x,y,z)$, which of the following operations is not allowed?

Mark only one oval.

$$(
abla f). ec{D}$$
 $abla . (
abla f). ec{D}$ $abla . (
abla f). ec{D}$ $abla . (
abla f). ec{D}$

5. Poisson's equation is the simplified version of Laplace's equation under no 2 points charge condition. *

Mark only one oval.

- True
- False

6.	Scalar Laplacian operation on the scalar equivalent to *	lar field to produce another scalar field	4 points		
	Mark only one oval.				
	Divergence followed by curl operation				
	Curl operation followed by divergence operation				
	Divergence operation followed by gradient operation				
	Gradient operation followed by divergence operation				
7.	The work done by the electric field to		4 points		
	moved from point A to point B on an equipotential surface with having a displacement of 'D' is				
	Mark only one oval.				
	0				
	Infinite				
18	BEC55 EMW IAT-1 2020 [Part- A,	Attempt any 3 questions in this section and uploa single file (only PDF/Image)	d a		
Subjective Questions]					

- 8. Attempt any 3 questions in this section and upload a single file (only
 PDF/Image) [Also upload the rough work done to solve the objective problem,
 this will be also consider for proper valuation]
 - Q1. A 15-nC point charge is at the origin in free space. Calculate V_1 if point P_1 is located at $P_1(-2, 3, -1)$ and $P_1(a) = 0$ at infinity; $P_1(b) = 0$ at $P_1(b)$
 - Q2. Derive the point form the current Continuity Equation
 - Q3. Derive the LAPLACE'S and POISSON'S Equations
 - Q4. Two infinite length, concentric and conducting cylinders of radii a and b are located on the z axis. If the region between cylinders are charged free and $\epsilon_r = 4$, $V = V_0$ (V) at a, V = 0 (V) at b and b > a. Find the capacitance per meter length. Given

$$\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2}$$

$$\nabla V = \frac{\partial V}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial V}{\partial z} \mathbf{a}_{z}$$

Files submitted:

This content is neither created nor endorsed by Google.

Google Forms

Q1.80h: (a)
$$V_{P1} = \frac{1}{41180} R$$

= $\frac{1}{4000} \times 15 \times 10^{-1}$
 $\frac{1}{4000} \times 15 \times 10^{-1}$
 $\frac{1}{4000} \times 15 \times 10^{-1} \times 15 \times 10^{-1}$
 $\frac{1}{4000} \times 15 \times 10^{-1} \times 15 \times 10^{-1}$

(b) $V_{P1} = 36 - V$

= $36 - 1 \times 15 \times 10^{-1} \times 15 \times 10^{-1}$
 $\frac{1}{4000} \times 10^{-1} \times$

The continuity equation is considered for

The outward flow of positive charge must be balanced by a decrease of positive charge within closed surface. If the charge inside the closed surface is denoted by D; then rate of charge flow decreases by -dDi and the principle of consevention of charged requires $I = -dQi \Rightarrow I = \int J \cdot dS = -dQi$ Using the divergence, theoren, 6 J. ds = f (V. J) dv => J (V.J) dv = -d J J dv vol vol v $\int_{\text{vol}} (\nabla . T) dv = \int_{\text{vol}} -\partial \int_{\text{vol}} dv$ One point form of continuity equ is, V. J= - 2gv 3 Am - DERIVATIONS OF LAPLACE'S AND POISSON'S EQUATION:

A

vector. vector