ITC IAT 2

Answer all 5 full questions. Each question carries 10 marks.

Make use of workbook for solving all the questions.

Write your USN in each page of the workbook in the left top corner.

Questions are MCQs and Fill in the blanks.

At the end of the test upload the solutions workbook.

*Required

1.	Ema	iil address *	
2.	Nam	ne *	
3.	USN	*	
4.		tion * k only one oval.	
		A B C D E	
Q	1.	Apply Shannon's encoding algorithm to the folloredundancy of the so formed code. If S = {a,b,c	ode efficiency and

5.	Average Length, L =*	4 points
	Mark only one oval.	
	1.7 bits/symbol	
	1.6 bits/symbol	
	1.8 bits/symbol	
	1.4 bits/symbol	
6.	Entropy, H(S) =*	4 points
	Mark only one oval.	
	1.5855 bits/symbol	
	1.4855 bits/symbol	
	1.7855 bits/symbol	
	1.2855 bits/symbol	
7.	Code efficiency =*	1 point
	Mark only one oval.	
	83.18	
	84.18%	
	87.38%	
	86.38%	

8.	Cod	e Redundancy =*	1 point
	Mark	k only one oval.	
		13.62 %	
		15.82 %	
		16.82 %	
		12.62 %	
Q	2.	Given the symbols S= {a,b,c,d,e,f} with respective probabilities P= {0.4, 0.2, 0.2, 0.1, 0.07, 0.0 construct a binary code by applying Shannon-Fano encoding procedure. Determine the code efficiency and redundancy of the so formed code. Draw the code tree for the same.	
9.		rage Length, L =	4 points
	Mark	k only one oval.	
		1.8 bits/symbol	
		2.8 bits/symbol	
		1.3 bits/symbol	
		2.3 bits/symbol	
10.	Ent	ropy, H(S) =*	4 points
	Ma	rk only one oval.	
		2.209 bits/symbol	
		2.109 bits/symbol	
		1.809 bits/symbol	
		1.909 bits/symbol	

11.	Coc	de efficiency =*	1 point
	Mar	rk only one oval.	
		96.04%	
		95.04%	
		97.04%	
		98.04%	
12.	Cod	de Redundancy =*	1 point
	Mar	rk only one oval.	
		4.96%	
		1.96%	
		2.96%	
		3.96%	
Q3.		Consider a source with S= {a,b,c,d,e,f,g,h} with respective probabilities P= {0.22, 0.2, 0.18, 0.15 0.1, 0.08, 0.05, 0.02}, construct a binary Huffman code by placing the composite symbol as low you can Determine the code efficiency and redundancy of the so formed code.	
13.	Ave	erage Length, L =*	points
	Mar	rk only one oval.	
		2.7 bits/symbol	
		2.8 bits/symbol	
		2.9 bits/symbol	
		2.6 bits/symbol	

14.	Entropy, H(S) = *	4 points
	Mark only one oval.	
	2.535 bits/symbol	
	2.7535 bits/symbol	
	2.635 bits/symbol	
	2.835 bits/symbol	
15.	Code efficiency =*	1 point
	Mark only one oval.	
	96.34 %	
	98.34 %	
	97.34 %	
	94.34 %	
16.	Code Redundancy =*	1 point
	Mark only one oval.	
	2.66 %	
	1.66 %	
	3.66 %	
	5.66 %	
Q4	In a communication system, a transmitter has 3 input symbols A = {a1, a2, a3} and receiver a has 3 output symbols B = {b1,b2,b3}. The Matrix given in figure 4 shows JPM with some marg probabilities. Find the missing probabilities (*) in the table, P(b3/a1), P(a1/b3). Also check whether the events a1 and b1 are statistically independent or not.	

JPM figure 4.

17.	P(a3,	b1) =	
-----	-------	-------	--

2 points

Mark only one oval.

- 1/3
- 1/9
- 1/12

2 points

Mark only one oval.

- 1/6
- 1/9
- 1/12

19.	P(a3,b3) =*
	Mark only one oval.
	1
	0
	1/2
20.	P(b3/a1)*
	Mark only one oval.
	5/12
	5/6
	5/36
	1/4
21.	P(a1/b3)*
	Mark only one oval.
	1/2
	1
	1/4

) 1/12

2 points

2 points

1 point

22. P(a1).P(b1) = . Therefore a1 & b1 are *

1 point

Mark only one oval.

- 1/2, not statistically independent
- 1/6, not statistically independent
- 1/12, statistically independent
- 1/9, not statistically independent

Q5.

A transmitter has an alphabet consisting of 5 letters $\{a1, a2, a3, a4, a5\}$ and the receiver has an alphabet of four letters $\{b1,b2,b3,b4\}$. The joint probabilities of the system are given in the figure 5. Compute the individually the following entropies of this channel H(A), H(B), H(A,B), H(B/A) and H(A/B).

Markov model figure 5.

$$P(A, B) = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ a_2 & 0.25 & 0 & 0 & 0 \\ a_2 & 0.10 & 0.30 & 0 & 0 \\ 0 & 0.05 & 0.10 & 0 \\ 0 & 0 & 0.05 & 0.1 \\ 0 & 0 & 0.05 & 0 \end{bmatrix}$$

23. H(A) = _____ bits/symbol

2 points

Mark only one oval.

- 1.857
- 2.066
- 1.809
- 1.257

H(B) =	_ bits/symbol *
Mark only on	e oval.
1.857	
2.066	
1.809	
1.257	
H(A,B) =	bits/symbol
Mark only on	e oval.
2.066	
2.666	
2.166	
1.666	
H (B/A)=	bits/symbol ³
Mark only on	e oval.
0.4	
0.6	
	Mark only on 1.857 2.066 1.809 1.257 H(A,B) = Mark only on 2.066 2.666 2.166 1.666 H (B/A)= Mark only on 0.4

1.766

1.666

	2 points
	2 points

2 points

27.	H (A/B)= bits/symbol *	2 points
	Mark only one oval.	
	0.908	
	0.809	
	1.809	
	1.908	
Sol	ution Upload	Upload the solution document of IAT 2 as a pdf file
28.	Files submitted:	

This content is neither created nor endorsed by Google.

Google Forms

	(L= & Rolo	/ /				
	= 0.5×1 + 0.3×2+0.2×3 = 1.7 bust squeet. binits/symbol	/ /				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ /				
	H(8)= & Pologol Con 200					
	= 0.5/0g +0.3/0g +0.2/0g 0.2					
	= 1.4855 bits [symbol 300	/ /				
	$\eta = H(s) = 1.4855 \times 100'$					
	= 87.387.//					
	Ry = 100-87.38 = 12.62%//					
Q, 2						
	$S = \{a, b, c, d, e, f\}$					
	P={0.4,0.2,02,0.1,0.07,0.03}					
Syr	ubols Pf Pi Pi Pi					
	b 0.2 1 0.2 0 (2011)					
	C 6.2 0 0.2 1 (SOLI) = (8.3)					
	d 0.1 0 0.1 0 per 0.10 1 1 200					
	e 0.07 0 0.07 0 0.07 0 0.07 1 f 0.03 0 0.03 0 0.03 0 0.03 0					
	0 = 50 + 1000 1 1 = 10 \$ 100 0 = 100					
	Clade of the State of	_				

	6.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	{a,b,c,	def.	a.h?	1.1	Jack Car	100
		P=	S 0, 22 n	25018	3,hs , 0,15,0,1	0.029 0.0	5,000	
			1	9	r. g	251		
	1:	Symb	ol Pi	Code	Pi	code	Pi	Code
	2	a	0.22	3 10	0.22	1010	0.22	10
	2	Ь	0,2	12 11	0.2	10110	0,2	_11
	3	C	0,18	000	20.18	000	0.18	000
.——	3	d	0,15	001	0.15	001	0.15	2001
	3	e	01)	011	001	011.5	70.157	010
	1	f	0,08	0100	0.087_	',	0-15.1	011
_ = = = =		9		01010-	->0.07	$\Omega \cup \Omega \cup$	XP-7;	
5		h	0.025	01011	· lock-was	of. 1 8		
	\parallel		;				/	1
	4	Po	{ code	,	coc	le Pi	Code	Pi code
	\parallel	0.256	[0]	70	33 01			20.58 0
50.00	1	0.22	10 10		25 01	1 0.3	3700	
		0.2	1	(227 10	_ , 0.2	5501	
	+	0-187	000) 0.	2) 11	4.	27-24	
-	+	0.15)	1001		į	e), g,		
	+	9.01.	8	11, 4. 2	£	1.01	80 1 3	
	-			= 0,2	2x2+2x	0.2 + 3x	(0.18+0	15+0D
	+		1	7 00	8 X 4 + E	(0.05+	0.02)	
	-		= 2	. 8 6 m	ts/symbo	AP . G	JH · II	
	#	1110	810				J	18 log/0.8 08 log/0.08 10g/0.05 to,09
	\parallel	AU	(c) = 2 Po	02 =	0.22 [03]	602 tas	leg/0.2+0.	18 log 1/0.2
	\dagger		2	11 -	F0/15/19/1	2,15+0,11	leg/0.1+0.	08/00/10.00
	-			2, +53	5 bits/sy	mbol	+0,03	109/0.0510,09
			1.05)	2.75	35 × 100 /	78.3	34%	
			D - 10	2.8	,			
			The - 11	10-18	.34= 1	166%		

