CMR

INSTITUTE OF

TECHNOLOGY

						STING 25 YEARS *
USN						* CMR INSTITUTE OF TECHNOLOGY

Internal Assesment Test - II

Sub:	Principles of Commu	ınication Syst	ems					Code:	18EC53
Date:	October 2020	Duration:	90 mins	Max Marks:	50	Sem:	5th	Branch:	ECE
			Answ	ver All Question	S				

N	Question	Mar	СО	RB
0		ks		T
1	Explain single tone frequency modulation. Derive necessary equations. Compare it with AM using phasor	10	CO1	L2
	diagram.			
2	Explain FM demodulation using PLL.	10	CO2	L2
3	FM modulated signal is defined by	05	CO2	L3
	$s(t) = 10sin \left(5 * 10^8 t + 4sin (1250t)\right)$			
	Calculate a) Modulation Index b) Carrier frequency c) Frequency Deviation d) Power generated across 5ohm load.			
4	Explain FM stereo multiplexing with the help of block diagram	07	CO2	L2
5	Explain the working of Superheterodyne receiver.	08	CO1	L2
6	Describe the demodulation of FM signal using balanced slope detector.	10	CO2	L2

Solution

1. FM single tone

> Frequency Modulation is a process of altering the frequency of Carrier signal in accordance with the instantaneous values of message signal by keeping amplitude & phase of Carrier Corstant.

Time domain expression:

Let the instantaneous value of Carrier signal is

$$C(1) = A_c \cos 2\pi f_c + \longrightarrow (1)$$

· Let the instantaneous Value of message signal is

$$m(t) = A_m \cos a \pi f_c t \rightarrow (3)$$

· We know that the standard equation of Angle modulated wave

18 given by,
$$S(t) = A_C \cos \Theta_1(t) \longrightarrow (3)$$

where O:(1) = Angle & FM wave (modulated wave)

· We know that the finstantaneous frequency fit) of FM signal

is given by
$$f_i(t) = f_c + K_f m(t)$$

· We know that the Angular Prequency,

$$W_{\uparrow}(t) = \frac{d}{dt} \theta_{\uparrow}(t)$$

$$w_{I}(t) = \frac{d}{dt} \theta_{I}(t)$$

$$2\pi f_{I}(t) = \frac{d}{dt} \theta_{I}(t)$$

$$f_1(t) = \frac{1}{2\pi} \frac{d}{dt} \frac{\theta_1(t)}{dt}$$

substitute to (+)=f(+ K+m1+) in equation (5) we get,

$$f_c + k_f m(t) = \frac{1}{2\pi} \frac{d}{dt}$$

$$\frac{d}{dt} = \frac{d}{dt} k_f + 2\pi k_f m(t) - (6)$$

$$\frac{d}{dt} = \frac{d}{dt} k_f + 2\pi k_f m(t) - (6)$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f + 2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m(t) \right] dt$$

$$\frac{d}{dt} = \int \left[2\pi k_f m($$

Equation (10) is the standard equation of FM signal for $M(t) = A_m(os a x fort) = tohere B = \frac{K_1 Aon}{for} = \frac{AF_{max}}{for} = of FM signal,$

2. FM DEMODULATION

phase Locked Loop (PLL) is a negative feedback system.
That Consists of three major Components

(1) A Multiplier rused as a phase detector @ phase Comparator.

Xii) A - voltage Controlled oscillator (VCO)

The Block diagram of PLL is shown in Fig. 1.

Fig. 1: Block diagram of PLL

by the voo output is defined as

$$T(t) = A_v \cos(2x \phi_c t + \phi_a(t)) - 0$$
When $\phi_a(t) = 2\pi K_v \int_{V(t)}^{t} dt$.

L) Then, the socerning signed (FM) and the voo output o(+) (S(+))

are applied to the multiplier, then it gives error signed,

$$e(t) = r(t). S(t)$$
 — (20)

When
$$S(t) = A_c Sin \left[2\pi f_c t + \phi_1(t)\right] - 3$$

When $\phi_1(t) = 2\pi K_f \int_0^t m(t) dt = -6$

The phase locked loop (PLL) is said to be in phase-Lock, when the phase error | o(t) = 0 The Linear model of PLL for the demodulation of FM-raignal is shown for Figure 2. dt Fig. 2: Linear Model of Phase Locked Loop We know that $\phi_1(t) = 2\pi \, k_f \int_m^t (t) \, dt$, where $k_f \in freq$. Somethinly \$\\display (t) = &x K_V \int v(t) dt , Tuhex K_V = Prequency Sensitivity (onshow of vco) From fig. 2, \$\dagger_e(t) = \dagger_i(t) - \dagger_a(t) - 3 Wik T for phase-bok mode: $\phi_e(t) = 0$ (Assuming Small Emory) · . Equation (3) => 0 = \$\phi_1(t) - \phi_2(t) · (d) = (1) Thing equations (& @ We get $2\pi k_f \int_0^t m(t) dt = 2\pi k_v \int_0^t v(t) dt$ $k_f \int_0^t m(t) dt = k_v \int_0^t v(t) dt$ 37

Differentiating both sides of equation (4), we get (37)
$$k_{f} m(t) = k_{V} V(t).$$

$$v(t) = \frac{k_{f}}{k_{V}} m(t) = k_{m}(t)$$
These
$$k = \frac{k_{f}}{k_{V}}$$
The sequence of the low pass-loop filter (h(t)) is proportional to the original modulating signal. For (e., The message signal prosent in FM-modulated wave s(t) is recovered and it is produced at the output of loop filter.

$$s(t) = 10\sin(5*10^8t + 4\sin(1250t))$$

Comparing with basic FM equation

$$s(t) = A_c \cos[2\pi f_c t + \beta \sin(2\pi f_m t)]$$

- a) Modulation Index = 4
- b) Carrier frequency = 79.6MHz
- c) Frequency Deviation =index*fm =4*199 =796Hz
- d) Power generated across 50hm load = $(Ac^2)/2R = 50/50 = 1W$

4. FM stereo

stored multiplexing is a form of frequency division multi-- Plexing < FDM) designed to transmit two separate signals [mp(t) and mp(t)] via the same carrier.

FM-stree system consists of .

a) FM-stereo transmitter

b) FM-Stro Receiver.

FM- stereo transmitter :-

Let M_L(t) and m_R(t) denote the two message 189 miles picked top by Left hand and Right hand microphones at the transmitting end of the system, as shown in Fig. 1.

It tuses a pilot carrier frequency, fc = 19 KHZ. Frequency doubles
 - produces, sub carrier, cos(4xfct).

· The Multiplexed signal m(+), produced at the output of multiplexes in transmitter of FM stereo system is,

$$m(t) = [m_L(t) + m_R(t)] + [m_L(t) - m_R(t)] \cos 4\pi R_c t + k \cos (2\pi R_c t)$$

Baseband

- · Multiplexed signal, m(+) consists of three different signals
 - 1. [mi(+)+mp(+)] ⇒ sum of mi(+), mp(+) generated by the \
 Simple matrixer. It is baseband signal.
 - 2. [m_lit)-me(t)] cos(4) f(t) => DSBSC-signal produced by the product modulator.
 - 3. K. (os (27 fct) ⇒ pilot carrier signal multiplied by a constant 'K'.

Fig 2: Demultiplexes in receiver of FM-stereo aystem

Fig. 2, shows the deincultiplexer in receiver of FM-stereo system. It is used to recover the two message signals milt) and mest).

FM-stereo demultiplexer consists of 3-pilters,

- 1. Baseband LPF: It selects the base-band component [mit)+mplt
 Present in multiplexed signal mit).
- 2. BPF: (Bandpass filter): It selects the DSBSC-Bignal.
- 3. Namon band files: It selects the pilot Carrier signal, Cos(25, ft).

Frequency doubles produces the required subcarrier signal, cos(4x) for coherent detection of DSBSC-signal.

Coherent Detector, recovers the difference signal [milt)-melt].

Finally the Matrixer, produces the required signals 2milt) and 2melt).

5. Superheterodyne

· The superheterodyne receiver, is a special type of receiver that fullfills the following features

- Good Scientify is good sensitivity is good stability.

- · The block diagram of super-heterodyne receiver is shown to
- · Super-heterodyne receiver works on the principle of "heterodyning"
- · Heterodyning, is a process of combining Incoming RF-signal and Local oscillator frequency signal, results in a <u>Constant</u> Intermediate frequency signal. This operation is performed in Mixer. Therefore Mixer is called as Heart of Super-heterodyne receiver.
- · The various blocks in Superheterodyne receiver are
- Receiving Antenna: It receives the RF-signal RF-signal Can be either AM-signal @ FM-signal.

For AM-signal: $f_{RF} \Rightarrow 535 \, \mathrm{kHz}$ to 1605 kHz for FM-signal: $f_{RF} \Rightarrow 88 \, \mathrm{MHz}$ to 108 MHz

RF-stage: - It selects the required frequency from incoming-RF-signal and Amplifies the selected fig., signal to required complifude level for further processing.

Local oscillator: It generates Sinuspidal Rignal faving frequency 'f'.

Mixer : It performs the heterodyning operation & produces constant intermediate frequency signed as output

FRF Mixes	IF RE LO	-	AM	FM
+ Heterodyni	Constant	FIF	455 KHZ	IO-TMHZ

*To achieve Constant fif, the Capacitos present in RF-stage, LOCA OSCIllator, Mixer are Connected to Common @Ganged tuner

+ Mutistage IF Amplifier: It amplifies the Intermedial Frequency signal Amplified IF signal 18 fed to detector.

Ly Detector: - It detects the message signal present in amplified IF-signal.

- boxe-band Rignal at audio-frequency (AF)
- Ly Audio Amplifier: It amplifies the Af-signal to the required amplitude level.
- Amplifier to a power level suitable to drive the Loud-speaker.
- Loud-speaker:- It Converts electrical signal to physical sound

Note: In AM-super heterodyne receiver, $f_{TF} = f_{RF} - f_{L0} = 455 \, \text{kHz}$.

In FM-super heterodyne receiver, $f_{TF} = f_{RF} - f_{L0} = 10.7 \, \text{MHz}$.

. The equivalent circuit diagram is shown in Fig. 2. It Consists of, -> Center +apped transformer : It's primary is tuned to frequency of FM- signor, "fc top" (Intermediate frequency) · It produces 180° out-of-phase Voltages at Secondary Windings The supper part of the secondary of transformer, Consists of Diode- Envelope detector and it is tuned above to by of. That is its resonant frequency is "fit of" [upper tuned filter] HPPER POST Secondary EtOF D4 Filler. FM Wave S(+) Lower poor of Secondary Figz: circuit diagram of Bolancal slope delector > The lower pood of the secondary of dransformes also consists of similar diade envelopedekar and it is tuned below to by OF. That is it occoment forguency is "fc-of"[coner Turned Ly It produces the required output to Hoge (Baseband message signal) Vo=m(t) as shown in Equation (). Normalized putpit Amplitude Response of 0.707 upper tuned tiker - Amplifude response 0-107 Net Response Lower tuned filler (V6) (162) Figs: Frequency Response